Tìm tất cả các giá trị thực của tham số m để hệ 3 2 x + x + 1 - 3 2 + x + 1 + 2017 x ≤ 2017 x 2 - m + 2 x + 2 m + 3 ≥ 0 có nghiệm.
A. m ≥ - 3 .
B. m ≥ - 2 .
C. m > - 3 .
D. m ≤ - 2 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Phương pháp:
Sử dụng phương pháp hàm số giải bất phương trình (1), suy ra điều kiện của nghiệm x.
Bất phương trình (2), cô lập m, đưa về dạng m ≥ f(x) trên [a;b] có nghiệm
Cách giải: ĐK: x ≥ –1
Xét hàm số có => Hàm số đồng biến trên R
Để hệ phương trình có nghiệm thì phương trình (2) có nghiệm
Với
Để phương trình có nghiệm (sử dụng MTCT để tìm GTNN)
Chọn D
Hệ bất phương trình vô nghiệm khi và chỉ khi m - 1 ≥ 3 hay m ≥ 4
Hàm có 3 điểm cực trị khi và chỉ khi:
\(-m\left(m+1\right)< 0\Rightarrow\left[{}\begin{matrix}m>0\\m< -1\end{matrix}\right.\)
Đáp án B