Cho hàm số f ( x ) = a x 4 + b x 3 + c x 2 + d x + e có bảng biến thiên như hình vẽ sau
Có bao nhiêu số nguyên dương m để hàm số y=|f(x)+m| có 7 điểm cực trị.
A. 0.
B. 21.
C. 18.
D. 19.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
g ' ( x ) = f ' ( x ) - 1 ; g ' ( x ) = 0 ⇔ f ' ( x ) = 1
Dựa vào bảng biến thiên của hàm số y = f ' ( x ) ta có
f ' ( x ) = 1 ⇔ [ x = - 1 x = x 0 > 1
Bảng xét dấu g ' ( x )
Vậy hàm số g(x)=f(x)-x có một điểm cực trị.
Chọn đáp án D.
Chọn đáp án A.
Hàm số đã cho nghịch biến trên khoảng m - 1 ; m + 2
Vậy để hàm số f x nghịch biến trên khoảng 2 ; 3
Hàm số đã cho nghịch biến trên khoảng (m+1;m+2). Vậy để hàm số f(x) nghịch biến trên khoảng
2 ; 3 ⇔ 2 ; 3 ⊂ m - 1 ; m + 2
⇔ m - 1 ≤ 2 m + 2 ≥ 3 ⇔ 1 ≤ m ≤ 3
⇒ m ∈ 1 , 2 , 3
Chọn đáp án A.
Chọn đáp án A
Phương pháp
Dựa vào BBT để xác định số điểm cực trị của đồ thị hàm số.
Cách giải
Dựa vào BBT ta thấy hàm số có 2 điểm cực trị là x=-1; x=1