K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2017

Theo giả thiết và công thức tích phân từng phần, ta có:

Vậy 

Chọn đáp án A.

6 tháng 1 2017

Gọi A(0;t) với t > 0. Suy ra 

 Theo giả thiết AN = 2AM nên suy ra 

Chọn D

18 tháng 11 2021

b. Đồ thị đt đề cho là y=6

PTGD 2 đt đầu bài với đt câu b là: \(\left\{{}\begin{matrix}2x=6\\x-1=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\rightarrow A\left(3;6\right)\\x=7\rightarrow B\left(7;6\right)\end{matrix}\right.\)

3: Vì (d')//(d) nên a=-1

Vậy: (d'): y=-x+b

Thay x=0 và y=-2 vào (d'), ta được:

b-0=-2

hay b=-2

AH
Akai Haruma
Giáo viên
7 tháng 1 2022

Lời giải:
1. Đồ thị $y=-x+1$ có dạng như sau:

2. $A\in Ox$ nên $y_A=0$

Ta có: $y_A=-x_A+1\Leftrightarrow 0=-x_A+1\Leftrightarrow x_A=1$
$B\in Oy$ nên $x_B=0$

Ta có: $y_B=-x_B+1=-0+1=1$

Diện tích tam giác $OAB$:

$S=\frac{1}{2}OA.OB=\frac{1}{2}|x_A|.|y_B|=\frac{1}{2}.1.1=\frac{1}{2}$ (đơn vị diện tích)

3.

Vì $(d')$ song song với $(d)$ nên nó có dạng $y=-x+m$

Tung độ gốc $=-2$ tức là $m=-2$

Vậy $(d'): y=-x-2$

2: Tọa độ điểm A là:

\(\left\{{}\begin{matrix}y_A=0\\-x_A+1=0\end{matrix}\right.\Leftrightarrow A\left(1;0\right)\)

Tọa độ điểm B là:

\(\left\{{}\begin{matrix}x_B=0\\y_B=-0+1=1\end{matrix}\right.\)

Vậy: B(0;1)

\(S_{OAB}=\dfrac{OA\cdot OB}{2}=\dfrac{1}{2}\)

3: Vì (d')//(d) nên a=-1

Vậy: (d'): y=-x+b

Thay x=0 và y=-2 vào (d'), ta được:

b-0=-2

hay b=-2

19 tháng 4 2018

Đáp án là D

15 tháng 8 2023

Hàm số \(y=log_cx\) nghịch biến

\(\Rightarrow0< c< 1\) và các hàm \(y=log_ax,y=log_bx\) đồng biến nên \(a,b>1\)

Ta chọn \(x=100\Rightarrow log_a>log_b100\Rightarrow a< b\Rightarrow b>a>c\)

\(\Rightarrow B\)

15 tháng 8 2023

B

18 tháng 12 2022

b: Để hai đường song song thì m-2=2

=>m=4

c: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\x=\dfrac{-2}{m-2}\end{matrix}\right.\Leftrightarrow OA=\dfrac{2}{\left|m-2\right|}\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\Leftrightarrow OB=2\)

SAOB=1

=>1/2*4/|m-2|=1

=>4/|m-2|=2

=>|m-2|=2

=>m=4 hoặc m=0