K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2017

18 tháng 7 2021

Bài 1:

Vì ∠AOC = ∠BOD (đối đỉnh)

Vì ∠AOC + ∠BOD = 140o (gt)

⇒ ∠AOC = ∠BOD = 140o/2 = 70o

Ta có: ∠AOC + ∠AOD = ∠COD (2 góc kề bù)

Thay số: 70o + ∠AOD = 180o 

∠AOD = 180o - 70o 

∠AOD = 110o

Vì ∠AOD = ∠BOC (đối đỉnh)

⇒ ∠BOC = 110o

Vậy ∠AOC = 70o

       ∠BOD = 70o

       ∠AOD = 110o

       ∠BOC = 110o

18 tháng 7 2021

Bài 3:

undefined

23 tháng 5 2022

a) Ta có: \(\widehat{xOy}=140^0\)

              \(\widehat{xOA}=\widehat{yOB}=90^0\) ( do \(OA\perp Ox,OB\perp Oy\) )

\(\Rightarrow\widehat{AOB}=360-\left(\widehat{xOy}+\widehat{xOA}+\widehat{yOB}\right)\)

\(\Leftrightarrow\widehat{AOB}=360^0-\left(140^0+90^0+90^0\right)\)

\(\Leftrightarrow\widehat{AOB}=40^0\)

\(OM\) là tia phân giác của \(\widehat{xOy}\)

\(\Rightarrow\widehat{xOM}=\widehat{MOy}=\dfrac{1}{2}\widehat{xOy}=\dfrac{1}{2}.140^0=70^0\)

\(OM'\) là tia đối của \(OM\Rightarrow\widehat{MOM'}=180^0\)

Mà \(OA\) nằm ngoài \(\widehat{xOy}\) và \(OA\perp Ox\) nên \(\widehat{MOM'}=\widehat{MOx}+\widehat{xOA}+\widehat{AOM'}\)

Do đó \(\widehat{AOM'}=\widehat{MOM'}-\left(\widehat{MOx}+\widehat{xOA}\right)\) \(\Rightarrow\widehat{AOM'}=180^0-\left(70^0+90^0\right)=20^0\) \(\left(1\right)\)

Mặt khác \(Oy\) nằm giữa \(OB\) và \(OM\) nên \(\widehat{MOB}=\widehat{MOy}+\widehat{yOB}=70^0+90^0=160^0\)

\(\Rightarrow\widehat{MOB}< \widehat{MOM'}\)

Do đó \(OB\) và \(Oy\) nằm cùng nửa mặt phẳng bờ \(MM'\)

\(Ox\) nằm giữa \(OA\) và \(OM\) nên\(\widehat{MOA}=\widehat{MOx}+\widehat{xOA}=70^0+90^0=160^0\) 

\(\Rightarrow\widehat{MOA}< \widehat{MOM'}\) 

Do đó tia \(OA\) và \(Ox\) nằm cùng nửa mặt phẳng bờ \(MM'\)

Nên \(OM'\) nằm giữa \(OA\) và \(OB\)

\(\Rightarrow\widehat{AOB}=\widehat{AOM'}+\widehat{M'OB}\Rightarrow\widehat{M'OB}=\widehat{AOB}-\widehat{AOM'}=40^0-20^0=20^0\left(2\right)\) 

Từ \(\left(1\right)\) và \(\left(2\right)\) ta có: \(\widehat{M'OB}=\widehat{AOM'}=20^0=\dfrac{1}{2}\widehat{AOB}\)

Suy ra \(OM'\) là tia phân giác của góc \(\widehat{AOB}\)

b) Ta có: \(\widehat{MOx}< \widehat{MOA}< \widehat{MOM'}\) nên \(OA\) nằm giữa \(Ox\) và \(OM'\)

Mà \(OM'\) là tia phân giác của góc \(\widehat{AOB}\) 

Suy ra \(OA\) nằm giữa \(Ox\) và \(OB\)

Vậy \(\widehat{xOB}=\widehat{xOA}+\widehat{AOB}=90^0+40^0=130^0\)

 

 

 

 

30 tháng 9 2016

Sao ko có gì vậy ạ 

30 tháng 9 2016

mỹ lừa tao

 

29 tháng 8 2017

8 tháng 9 2017

a) 5x = 8y = 20z => \(\dfrac{5x}{40}\)= \(\dfrac{8y}{40}\)=\(\dfrac{20z}{40}\)=> \(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{2}\)

áp dụng tính chất dãy tỉ số = nhau . Và x-y-z=3 .Ta có

\(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{2}\) =\(\dfrac{x-y-z}{8-5-2}\)=3

\(\dfrac{x}{8}\)=3 => x= 8.3

=> x = 24

\(\dfrac{y}{5}=3\)=> x = 5.3

=> x = 15

\(\dfrac{z}{2}\)=3 => x = 2.3

=> x =6

b ) (\(\dfrac{6}{11}\))x = (\(\dfrac{9}{2}\))y

---> x = (\(\dfrac{9}{2}\))(\(\dfrac{11}{6}\))y = (\(\dfrac{33}{4}\))y
(\(\dfrac{9}{2}\))y = (\(\dfrac{18}{5}\))z

---> z = (\(\dfrac{9}{2}\))(\(\dfrac{5}{18}\))y = (\(\dfrac{5}{4}\))y
---> - x + y + z = (\(\dfrac{-33}{4}\))y + y + (\(\dfrac{5}{4}\))y = - 120
---> - 6y = - 120 ---> y = 20 ---> x = 165 và z = 25.

8 tháng 9 2017

cảm ơn bạn nhé