Có bao nhiêu số có 4 chữ số được viết từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9 sao cho số đó chia hết cho 15?
A. 234
B. 243
C. 132
D. 432
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên cần lập có dạng a b c d ¯ a , b , c , d ∈ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 .
Số cần lập chia hết cho 15 nên nó chia hết cho 3 và 5.
Số cần lập chia hết cho 5 nên ta có: d = 5 ⇒ d có 1 cách chọn.
Số cần tìm có dạng: a b c 5 ¯ .
Số cần lập chia hết cho 3 nên a + b + c + 5 : 3 .
Chọn a có 9 cách chọn, chọn b có 9 cách chọn.
Có 3 cách chọn c.
Như vậy có: 9.9.3.1 = 243 cách chọn.
Vậy có 243 số thỏa mãn yêu cầu bài toán.
Chọn D.
Ta có .
Với d=4 thì c=5 , chọn a có 7 cách, chọn b có 7 cách nên có 7.7 = 49 số thỏa mãn.
Với d=2:
+) Dạng chọn c có 6 cách nên có 6 số thỏa mãn.
+) Dạng chọn a có 6 cách nên có 6 số thỏa mãn.
Đổi chỗ 4 và 5 thì có số thỏa mãn.
Tương tự với d=6; d=8 nên có tất cả 42 + 3.24 = 114 số thỏa mãn
Chọn B.
Ta có nên d ∈ {2;4;6;8}
·Với d=4; c=5, chọn a có 7 cách, chọn b có 6 cách nên có 7.6= 42 số thỏa mãn.
· Với d=2
1. Số cần lập có dạng chọn c có 6 cách nên có 6 số thỏa mãn.
2. Số cần lập có dạng chọn c có 6 cách nên có 6 số thỏa mãn
3. Số cần lập có dạng chọn a có 6 cách nên có 6 số thỏa mãn.
4. Số cần lập có dạng chọn a có 6 cách nên có 6 số thỏa mãn.
Như vậy với d=2 có 6+6+6+6=24 số thỏa mãn.
· Tương tự với d=6; d=8
Vậy có tất cả 42+3.24=114 số thỏa mãn.
Chọn B.
TH1: chữ số hàng đơn vị là 4, khi đó hàng chục là 5
Chọn 2 chữ số còn lại và xếp vào 2 vị trí đầu có \(A_7^2=42\) cách
TH2: chữ số hàng đơn vị khác 4 \(\Rightarrow\) có 3 cách chọn từ 2, 6, 8
Chọn chữ số còn lại có 6 cách
Hoán vị chữ số đó và cặp 45: \(2!.2!=4\) cách
\(\Rightarrow3.6.4=72\) số
Tổng: \(42+72=114\) số
Số chia hết cho 4 khi 2 chữ số tận cùng của nó chia hết cho 4, nên ý tưởng ở đây là chọn 2 số tận cùng trước.
Có \(\dfrac{96-04}{4}+1=24\) số có 2 chữ số chia hết cho 4 (tính cả những số bắt đầu bằng 0 như 04, 08...)
Loại ra 2 trường hợp 2 chữ số trùng nhau là \(44\) và \(88\), ta còn 22 chữ số.
Chia 22 chữ số này làm 2 loại: có chứa chữ số 0 bao gồm 6 số là 04, 08, 20, 40, 60, 80 và 16 số không chứa chữ số 0
- TH1: 2 chữ số cuối có chứa 0, chọn 3 chữ số còn lại từ 8 chữ số còn lại và hoán vị chúng có \(A_8^3\) cách \(\Rightarrow6.A_8^3\) số
- TH2: 2 chữ số cuối không chứa chữ số 0:
+ Chọn 3 chữ số còn lại 1 cách bất kì và hoán vị: \(A_8^3\) cách
+ Chọn 3 chữ số còn lại có mặt chữ số 0 và hoán vị sao cho số 0 đứng đầu: \(A_7^2\) cách
\(\Rightarrow16.\left(A_8^3-A_7^2\right)\) số
Cộng 2 trường hợp lại
Đáp án là B.
Gọi số số cần lập có dạng: N = a b c d ( 1 ≤ a , b , c , d ≤ 9 )
• Chọn a có 9 cách, chọn b có 9 cách chọn thì:
+ Nếu a + b + 5 chia hết cho 3 thì c ∈ 3 ; 6 ; 9 ⇒ có 3 cách chọn.
+ Nếu a + b + 5 chia cho 3 dư 1 thì c ∈ 2 ; 5 ; 8 ⇒ có 3 cách chọn.
+ Nếu a + b + 5 chia cho 3 dư 2 thì c ∈ 1 ; 4 ; 7 ⇒ có 3 cách chọn.
Vậy, theo quy tắc nhân ta có: 9.9.3 = 243 số.