K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2018

Đáp án là B.

• Kí hiệu số ghế là 1;2;3;4;5;6.

• Xếp trước 3 nam ngồi ở vị trí số lẻ và 3 nữ ngồi ở vị trí số chẳn và ngược lại

Ta có: 3!.3!.2! = 72

10 tháng 9 2017

Đáp án là B.

• Kí hiệu số ghế là 1;2;3;4;5;6.

• Xếp trước 3 nam ngồi ở vị trí số lẻ và 3 nữ ngồi ở vị trí số chẳn và ngược lại

Ta có: 3 ! . 3 ! . 2 ! = 72    

 

13 tháng 8 2018

Để xác định, các ghế được đánh số từ 1 đến 10 tính từ trái sang phải.

a) Nếu các bạn nam ngồi ở các ghế ghi số lẻ thì các bạn nữ ngồi ở các ghế còn lại. Có 5! cách xếp bạn nam, 5! cách xếp bạn nữ. Tất cả có 5 ! 2  cách xếp.

Nếu các bạn nam ngồi ở các ghế ghi số chẵn, các bạn nữ ngồi ở các ghế còn lại thì có  5 ! 2 cách xếp nam và nữ.

Vậy có tất cả 2. 5 ! 2 cách xếp nam nữ ngồi xen kẽ nhau.

b) Các bạn nam được bố trí ngồi ở các ghế từ k đến k + 4, k = 1, 2, 3, 4, 5, 6. Trong mỗi trường hợp có  5 ! 2 cách xếp nam và nữ.

Vậy có 6. 5 ! 2 cách xếp mà các bạn nam ngồi cạnh nhau.

18 tháng 5 2017

Để xác định, các ghế được đánh số thứ tự từ 1 đến 10 tính từ trái sang phải.

a) Nếu các bạn nam ngồi ở các ghế ghi số lẻ thì các bạn nữ ngồi ở các ghế còn lại. Có 5! cách xếp bạn nam, 5! cách xếp bạn nữ. Tất cả có \(\left(5!\right)^2\) cách xếp

Nếu bạn nam ngồi ở các ghế ghi số chẵn, các bạn nữ ngồi ở các ghế còn lại thì có \(\left(5!\right)^2\) cách xếp nam và nữ. Vậy có tất cả \(2.\left(5!\right)^2\) cách xếp nam nữ ngồi xen kẽ nhau.

b) Các bạn nam được bố trí ngồi ở các ghế từ \(k\) đến \(k+4,k=1,2,3,4,5,6\). Trong mỗi trường hợp có \(\left(5!\right)^2\) cách xếp nam và nữ. Vậy có \(6.\left(5!\right)^2\) cách xếp mà các bạn nam ngồi cạnh nhau.

28 tháng 10 2020

cho em hỏi khúc k+4 ạ...

NV
29 tháng 1

Không gian mẫu: \(8!\)

Có 2 kiểu xếp (kí hiệu N là nam, n là nữ): \(NnNnNnNn\) hoặc \(nNnNnNnN\)

Hoán vị 4 bạn nữ: \(4!\) cách

Hoán vị 4 bạn nam: \(4!\) cách

\(\Rightarrow2.4!.4!\) cách xếp thỏa mãn

Xác suất...

10 tháng 5 2023

Số cách xếp bạn nữ: 10!

Số cách xếp bạn nam: 10!

Xếp cả nam và nữ có 2 trường hợp 

=> 10! x 10! x 2

7 tháng 3 2017

a: Số cách xếp là: \(A^5_{10}=30240\left(cách\right)\)

b: TH1: 3 nam 2 nữ

=>Số cách xếp là: \(3!\cdot2!\cdot2!\)(cách)

TH2: 2 nam 3 nữ

=>Số cách xếp là: 2!*3!*2!(cách)

TH3: 1 nam 4 nữ

=>Số cách xếp là 1!*4!*2!(cách)

TH4: 0 nam 5 nữ

=>Số cách xếp là 5!(cách)

=>Số cách là \(2!\cdot2!\cdot3!+2!\cdot2!\cdot3!+1!\cdot4!\cdot2!+5!\left(cách\right)\)

c: Số cách chọn 2 nữ trong 7 nữ là: 

\(C^2_7\left(cách\right)\)

Số cách xếp 3 nam và 2 nữ là:

\(3!\cdot3!\left(cách\right)\)

=>Số cách là: \(C^2_7\cdot3!\cdot3!\left(cách\right)\)

8 tháng 1 2023

amagzic

30 tháng 9 2017

Chọn C

Tiến hành theo các bước sau:

Bước 1: Xếp 6 nam ngồi quanh bàn tròn, có 5! Cách xếp.

Bước 2: Vì 6 nam ngồi quanh bàn tròn nên có 6 khoảng trống để xếp 6 người nữ, vậy có 6! Cách xếp.

Theo quy tắc nhân ta có 5!.6! = 86 400 cách. 

17 tháng 10 2019

Đáp án A

Phương pháp :

+) Chọn vị trí cho các bạn nam (hoặc nữ).

+) Hoán đổi các vị trí.

+) Sử dụng quy tắc nhân.

Cách giải : Chọn 1 vị trí trong 2 vị trí đối xứng có  C 2 1 cách chọn, như vậy có  ( C 2 1 ) 4 = 2 4  cách chọn ghế cho 4 bạn nam.

4 bạn nam này có thể đổi chỗ cho nhau nên có 4! cách xếp

Vậy có  cách xếp để mỗi bạn nam ngồi đối diện với một bạn nữ