Cho vecto v → = a , b sao cho khi tịnh tiến độ thị hàm số y = f x = x 2 - x + 1 x - 1 theo vecto v → ta nhận đồ thị hàm số y = g x = x 2 x + 1
Khi đó tích a.b bằng
A. 1
B. 5
C. 6
D. 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(A\left(x;x^3+3x+1\right)\) là 1 điểm thuộc \(f\left(x\right)\)
Gọi \(A'\left(x';y'\right)\) là ảnh của A qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow A'\in g\left(x\right)\)
\(\Rightarrow y'=x'^3-3x'^2+6x'-1\) (1)
Ta có: \(\left\{{}\begin{matrix}x'=x+a\\y'=x^3+3x+1+b\end{matrix}\right.\)
Thay vào phương trình (1) ta được:
\(x^3+3x+1+b=\left(x+a\right)^3-3\left(x+a\right)^2+6\left(x+a\right)-1\)
\(\Leftrightarrow2+b=3ax^2+3a^2x+a^3-3x^2-6ax-3a^2+3x+6a\)
\(\Leftrightarrow x^2\left(3a-3\right)+x\left(3a^2-6a+3\right)+\left(a^3-3a^2+6a-b-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a-3=0\\3a^2-6a+3=0\\a^3-3a^2+6a-b-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\) \(\Rightarrow P=3\)
1.
Do \(\overrightarrow{v}\) cùng phương với \(\overrightarrow{u}\) nên \(\overrightarrow{v}=\left(a;a\right)\) với a là số thực khác 0
Chọn \(M\left(0;0\right)\) là 1 điểm thuộc d
Gọi M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in d'\)
\(\left\{{}\begin{matrix}x_{M'}=a+0=a\\y_{M'}=a+0=a\end{matrix}\right.\) \(\Rightarrow M'\left(a;a\right)\)
Thay vào pt d' ta được:
\(a+a-4=0\Rightarrow a=2\)
\(\Rightarrow\overrightarrow{v}=\left(2;2\right)\)
\(\Rightarrow\left|\overrightarrow{v}\right|=2\sqrt{2}\)
2.
Gọi \(\overrightarrow{u}=\left(a;b\right)\)
Gọi \(A\left(0;1\right)\) là 1 điểm thuộc d
Gọi A' là ảnh của A qua phép tịnh tiến \(\overrightarrow{u}\Rightarrow A'\in d'\)
Ta có: \(\left\{{}\begin{matrix}x_{A'}=a\\y_{A'}=b+1\end{matrix}\right.\)
Thay tọa độ A' vào pt d' ta được: \(a+b+1-5=0\Leftrightarrow a+b=4\)
Ta có:
\(\left|\overrightarrow{u}\right|=\sqrt{a^2+b^2}\ge\sqrt{\frac{1}{2}\left(a+b\right)^2}=2\sqrt{2}\)
\(\Rightarrow\left|\overrightarrow{u}\right|_{min}=2\sqrt{2}\) khi \(a=b=2\)
c) Đường thẳng d có vecto pháp tuyến là n→(1;-2) nên 1 vecto chỉ phương của d là(2; 1)
=> Vecto v→ không cùng phương với vecto chỉ phương của đường thẳng d
=> Qua phép tịnh tiến v→ biến đường thẳng d thành đường thẳng d’ song song với d.
Nên đường thẳng d’ có dạng : x- 2y + m= 0
Lại có B(-1; 1) d nên B’(-2;3) d’
Thay tọa độ điểm B’ vào phương trình d’ ta được:
-2 -2.3 +m =0 ⇔ m= 8
Vậy phương trình đường thẳng d’ là:x- 2y + 8 = 0
Độ dài bé nhất của vecto u → bằng khoảng cách từ một điểm bất kì trên d tới d’ bằng:
Đáp án C