K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2019

Chọn D

Đặt b86NnFy0rALf.pngOcL3nTgKziF8.png. Xét LdT8HHp7u3Th.png.

 

Để Xf7khVT6rXwY.pngUUHRsKuAjRY8.png.

21 tháng 3 2019

Đáp án B

Ta có  y ' = 4 sin 2 x   cos   x sin   x - ( 2 m 2 - 5 m + 2 ) cos   x = cos   x [ ( 2 sin   x - 1 ) 2 - ( 2 m 2 - 5 m + 3 ) ]

Xét trên ( 0 ; π 2 )  ta thấy cos   x > 0 , để hàm số đồng biến trên khoảng này thì  ( 2 sin   x - 1 ) 2 - ( 2 m 2 - 5 m + 3 ) ≥ 0  với  ∀ x ∈ ( 0 ; π 2 )  hay ( 2 m 2 - 5 m + 3 ) ≤ 0 ⇒ 1 ≤ m ≤ 3 2  do m nguyên nên tồn tại duy nhất m=1

 

y=sin x đồng biến trên \(\left(-\dfrac{\Omega}{2}+k2\Omega;\dfrac{\Omega}{2}+k2\Omega\right)\)

=>Hàm số y=sin x không thể đồng biến trên cả khoảng \(\left(0;\dfrac{5}{6}\Omega\right)\) được

=>Loại A

\(y=cosx\) đồng biến trên khoảng \(\left(-\Omega+k2\Omega;k2\Omega\right)\)

=>Hàm số y=cosx cũng không thể đồng biến trên khoảng \(\left(0;\dfrac{5}{6}\Omega\right)\)

=>Loại B

\(x\in\left(0;\dfrac{5}{6}\Omega\right)\)

=>\(x+\dfrac{\Omega}{3}\in\left(\dfrac{\Omega}{3};\dfrac{4}{3}\Omega\right)\)

=>\(y=sin\left(x+\dfrac{\Omega}{3}\right)\in\left[-\dfrac{\sqrt{3}}{2};\dfrac{\sqrt{3}}{2}\right]\)

=>Khi x tăng thì y chưa chắc tăng

=>Loại D

=>Chọn C 

25 tháng 2 2017

Đáp án D

1 tháng 12 2018

Đáp án D

21 tháng 6 2021

kiểu bài này có đáp án trên mạng rồi ấy ạ, anh/chị/ bạn nào mà xem qua đáp án trên mạng có thể giải thích kĩ hơn giúp em chỗ cos 1/x >0 về đoạn sau được không ạ, chứ ai đọc mãi mà không hiểu được 😭😭

NV
22 tháng 6 2021

Bất phương trình lượng giác:

\(cos\left(X\right)\ge a\Leftrightarrow-arccos\left(a\right)+k2\pi\le X\le arccos\left(a\right)+k2\pi\)

Vậy BPT: \(cos\left(\dfrac{1}{x}\right)>0\)

\(\Leftrightarrow-\dfrac{\pi}{2}+k2\pi\le\dfrac{1}{x}\le\dfrac{\pi}{2}+k2\pi\) với \(k\ge1\)

Nghịch đảo: \(\dfrac{2}{k4\pi-\pi}\le x\le\dfrac{2}{k4\pi+\pi}\)

19 tháng 1 2017

5 tháng 7 2017

Xét hàm số y = sin(1/x) với x > 0.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải bất phương trình sau trên khoảng (0; + ∞ ):

Giải sách bài tập Toán 12 | Giải sbt Toán 12 

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó, hàm số đồng biến trên các khoảng

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Và nghịch biến trên các khoảng

Giải sách bài tập Toán 12 | Giải sbt Toán 12

với k = 0, 1, 2 …

30 tháng 9 2019

Đáp án C

Hàm số y = sin x  đồng biến khi y ' = cos x > 0

<=> thuộc góc phần tư thứ 1 và 4

13 tháng 6 2018

a) y = x – sinx, x ∈ [0; 2π].

y′ = 1 – cosx ≥ 0 với mọi x ∈ [0; 2π]

Dấu “=” xảy ra chỉ tại x = 0 và x = 2π.

Vậy hàm số đồng biến trên đoạn [0; 2π].

c) Xét hàm số y = sin(1/x) với x > 0.


Giải bất phương trình sau trên khoảng (0;  + ∞ ):

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó, hàm số đồng biến trên các khoảng

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Và nghịch biến trên các khoảng

Giải sách bài tập Toán 12 | Giải sbt Toán 12

với k = 0, 1, 2 …