Tìm A =(2004+2003/2+2002/3+...+1/2004) : ( 1/2+1/3+1/4+1/5+...+1/2005)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt B = 2004+2003/2+2002/3+...+1/2004
B có 2004 phân số
tách số 2004 = 1+1+1+...+1(2004 số 1)
ghép 2004 số 1 vào từng nhóm như sau:
B=(1+ 2003/2)+ (1+ 2002/3)+...+(1+1/2004) +1
B = 2005/2+2005/3+......+2005/2004+2005/2005
B = 2005x(1/2+1/3+....+1/2004+1/2005)
Vậy A = 2005
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)
\(P=\frac{1}{5}-\frac{2}{3}=\frac{3-10}{15}=\frac{-7}{15}\)
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
\(=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)
\(=\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)
Ta có:
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
\(P=\frac{1}{5}\cdot\left(\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}\right)-\frac{2}{3}\cdot\left(\frac{\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}}{\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}}\right)\)
\(P=\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)
ta có \(2004+\frac{2003}{2}+\frac{2002}{3}+...+\frac{1}{2004}\)
\(=\left(1+\frac{2003}{2}\right)+\left(1+\frac{2002}{3}\right)...\left(1+\frac{1}{2004}\right)+1\)
\(=\frac{2005}{2}+\frac{2005}{3}+...+\frac{2005}{2004}+\frac{2005}{2005}\)
\(=2005\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2004}+\frac{1}{2005}\right)\)
\(\Rightarrow\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2005}}{\frac{2004}{1}+\frac{2003}{2}+\frac{2002}{3}+...+\frac{1}{2004}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2004}+\frac{1}{2005}}{2005\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2004}+\frac{1}{2005}\right)}\)
\(=\frac{1}{2005}\)
a) 1-2-3+4+5-6-7+8+...+2001-2002-2003+2004
S = (1+2-3+4) + (5+6-7-8) + ... + (2001+2002-2003-2004) + (2005+2006)
S = (-4) + (-4) + ... + (-4) + (2005+2006)
dãy S có 2004 - 1 : 1 + 1 = 2004 số hạng
dãy S có 2004 : 4 = 501 chữ số (-4)
do đó S = -4. 501 = -2004
S = -2004 + (2005+2006)
S = -2004 + 4011
S = 2007
b) tương tự nhé!!
675676587689689
a) Nhóm 4 số hạng liên tiếp từ đầu dãy:
A = (1-2-3+4)+(5-6-7+8)+(9-10-11+12)+ ...+(2001-2002-2003+2004) = 0
b) Nhóm 4 số hạng liên tiếp bắt đầu từ số thứ 2:
B = 1+(2-3-4+5)+(6-7-8+9)+...+(2002-2003-2004+2005)+2006 = 1+2006 = 2007.
Bài 1:
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
\(\Rightarrow P=\frac{1\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2002}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)
\(\Rightarrow P=\frac{1}{5}-\frac{2}{3}\)
\(\Rightarrow P=\frac{-7}{15}\)
Vậy \(P=\frac{-7}{15}\)
Bài 2:
Ta có: \(S=23+43+63+...+203\)
\(\Rightarrow S=13+10+20+23+...+103+100\)
\(\Rightarrow S=\left(13+23+...+103\right)+\left(10+20+...+100\right)\)
\(\Rightarrow S=3025+450\)
\(\Rightarrow S=3475\)
Vậy S = 3475
1. \(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
=> P =\(\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)
=> P = \(\frac{1}{5}-\frac{2}{3}\)
P = \(\frac{3}{15}-\frac{10}{15}\)
=> P =\(\frac{-7}{15}\)
2. ta có:
S = 23 + 43 + 63 +...+ 203
=> S = 13 + 10 + 23 + 20 +...+ 103 + 100
=> S = ( 13 + 23+...+ 103 ) + ( 10 + 20 +...+ 100 )
=> S = 3025 + 550
=> S = 3575
Vậy S = 3575
Đặt B = 2004+2003/2+2002/3+...+1/2004 B có 2004 phân số tách số 2004 = 1+1+1+...+1(2004 số 1) ghép 2004 số 1 vào từng nhóm như sau: B=(1+ 2003/2)+ (1+ 2002/3)+...+(1+1/2004) +1 B = 2005/2+2005/3+......+2005/2004+2005/2005 B = 2005x(1/2+1/3+....+1/2004+1/2005) Vậy A = 2005