3x- căn (x+1)+1=0 giải Pt và xác định Đk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-\sqrt{1-x}=\sqrt{x-2}+3\)
\(ĐK:\left\{{}\begin{matrix}1-x\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Vậy PT vô nghiệm
Để PT có 2 nghiệm \(\Leftrightarrow\Delta=\left(m-1\right)^2-4\left(m+6\right)\ge0\)
\(\Leftrightarrow m^2-6m-23\ge0\\ \Leftrightarrow\left[{}\begin{matrix}m\le3-4\sqrt{2}\\m\ge3+4\sqrt{2}\end{matrix}\right.\)
Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=1-m\\x_1x_2=m+6\end{matrix}\right.\)
\(x_1^2+x_2^2=10\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\\ \Leftrightarrow\left(1-m\right)^2-2\left(m+6\right)=10\\ \Leftrightarrow m^2-2m+1-2m-12=10\\ \Leftrightarrow m^2-4m-21=0\\ \Leftrightarrow\left[{}\begin{matrix}m=7\left(ktm\right)\\m=-3\left(tm\right)\end{matrix}\right.\Leftrightarrow m=-3\)
Điều kiện:
\(2\left(x-1\right)-3\left(2x+1\right)\ne0\)
\(\Leftrightarrow2x-2-6x-3\ne0\)
\(\Leftrightarrow-4x-5\ne\)
\(\Leftrightarrow-4x\ne5\)
\(\Leftrightarrow x\ne-\frac{5}{4}\)
\(\frac{3x+2}{2\left(x-1\right)-3\left(2x-1\right)}\)
Để giá trị của phương trình được xác định
\(2\left(x-1\right)-3\left(2x+1\right)=0\)
\(\Leftrightarrow\)\(2x-2-6x-3=0\)
\(\Leftrightarrow\)\(-4x-5=0\)
\(\Leftrightarrow\)\(-4x=5\)
\(\Leftrightarrow\)\(x=\frac{-5}{4}\)
Vậy \(x\ne\frac{-5}{4}\)để phương trình được xác định
Lời giải:
ĐKXĐ: $9x^2+6x+1\geq 0$
$\Leftrightarrow (3x+1)^2\geq 0$
$\Leftrightarrow x\in\mathbb{R}$
--------------------------
$\sqrt{9x^2+6x+1}=2-x$
\(\Rightarrow \left\{\begin{matrix} 2-x\geq 0\\ 9x^2+6x+1=(2-x)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 2\\ 9x^2+6x+1=x^2-4x+4\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\leq 2\\ 8x^2+10x-3=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 2\\ (4x-1)(2x+3)=0\end{matrix}\right.\Leftrightarrow x=\frac{1}{4}\) hoặc $x=\frac{-3}{2}$
a
a = 1, b = -3, c = 2
\(\Delta=b^2-4ac=\left(-3\right)^2-4.1.2=9-8=1\)
Nhẩm nghiệm:
a + b + c = 0 (1 - 3 + 2 = 0)
\(\Rightarrow x_1=1;x_2=\dfrac{c}{a}=\dfrac{2}{1}=2\)
b
a = -2, b = 1, c = 1
\(\Delta=1^2-4.\left(-2\right).1=1+8=9\)
Nhẩm nghiệm:
a + b + c = 0 (-2 + 1 + 1 = 0)
\(\Rightarrow x_1=1;x_2=\dfrac{c}{a}=\dfrac{1}{-2}=-\dfrac{1}{2}\)
c
a = 1, b = -4, c = 4
\(\Delta=\left(-4\right)^2-4.4=16-16=0\)
=> Phương trình có nghiệm kép.
\(x_1=x_2=-\dfrac{b}{2a}=\dfrac{-4}{2.1}=-2\)
d
a = 1, b = -1, c = 4
\(\Delta=\left(-1\right)^2-4.4=1-16=-15< 0\)
=> Phương trình vô nghiệm.
a) x² - 3x + 2 = 0
a = 1; b = -3; c = 2
∆ = b² - 4ac = (-3)² - 4.1.2 = 9 - 8 = 1 > 0
Phương trình có hai nghiệm phân biệt:
x₁ = (-b + √∆)/2a = [-(-3) + 1]/2 = 2
x₂ = (-b - √∆)/2a = [-(-3) - 1]/2 = 1
Vậy S = {1; 2}
b) -2x² + x + 1 = 0
a = -2; b = 1; c = 1
∆ = b² - 4ac = 1² - 4.(-2).1 = 9 > 0
Phương trình có hai nghiệm phân biệt
x₁ = (-b + √∆)/2a = (-1 + 3)/[2.(-2)] = -1/2
x₂ = (-b - √∆)/2a = (-1 - 3)/[2.(-2)] = 1
Vậy S = {-1/2; 1}
c) x² - 4x + 4 = 0
a = 1; b = -4; c = 4
∆ = b² - 4ac = (-4)² - 4.1.4 = 0
Phương trình có nghiệm kép:
x₁ = x₂ = -b/2a = -(-4)/(2.1) = 2
Vậy S = {2}
d) x² - x + 4 = 0
a = 1; b = -1; c = 4
∆ = b² - 4ac = (-1)² - 4.1.4 = -15 < 0
Phương trình vô nghiệm
\(\sqrt{1-x}+\sqrt{x-1}\)
Để căn thức XĐ thì \(\hept{\begin{cases}1-x\ge0\\x-1\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\le1\\x\ge1\end{cases}}}\)
\(ĐK:x\ge\dfrac{1}{3}\\ PT\Leftrightarrow\sqrt{x+1}=3x-1\\ \Leftrightarrow x+1=9x^2-6x+1\\ \Leftrightarrow9x^2-7x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=\dfrac{7}{9}\left(tm\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{7}{9}\)
\(\Leftrightarrow\sqrt{x+1}=3x-1\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{7}{9}\end{matrix}\right.\)