K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2021

\(hình\) \(như\) \(sai\) \(bn\) \(ạ\) \(vì:m=-2\Rightarrow\left\{{}\begin{matrix}\left(1\right):x^2+x-2=0\Rightarrow\left[{}\begin{matrix}x1=1\\x2=-2\end{matrix}\right.\\\left(2\right)x^2-2x+1=0\Rightarrow\left[{}\begin{matrix}x1=1\\x2=1\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow S1\ne S2\Rightarrow\left(1\right)\ne\left(2\right)\)

\(x^2+x+m=0\left(1\right)\)

\(x^2+mx+1=0\left(2\right)\)

\(tương\) \(đương\) \(TH1:\left(1\right)\left(2\right)vô-nghiệm\Leftrightarrow\left\{{}\begin{matrix}\Delta1< 0\\\Delta2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-4m< 0\\m^2-4< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{1}{4}\\-2< m< 2\end{matrix}\right.\)\(\Leftrightarrow\dfrac{1}{4}< m< 2\)

\(TH2:\left(1\right)\left(2\right)có-ngo-kép-chung\)

\(\left(2\right)\Rightarrow\Delta=0\Rightarrow m^2-4=0\Leftrightarrow m=\pm2\Rightarrow\left(1\right):x^2+x-2=0\Leftrightarrow\left[{}\begin{matrix}x1=1\\x2=-2\end{matrix}\right.\left(ktm\right)\)

\(với:m=2\Rightarrow\left(1\right):x^2+x+2=0\left(vô-ngo\right)\)

\(\Rightarrow\dfrac{1}{4}< m< 2\) \(thì....\)

 

16 tháng 11 2021

\(\left(1\right)\Leftrightarrow m=-x^2-x\)

Thay vào (2)

\(\left(2\right)\Leftrightarrow x^2-\left(x^2+x\right)x+1=0\\ \Leftrightarrow1-x^3=0\\ \Leftrightarrow\left(1-x\right)\left(x^2+x+1\right)=0\\ \Leftrightarrow x=1\left(x^2+x+1>0\right)\\ \Leftrightarrow m=-1-1=-2\)

 

b: Để hai phương trình này tương đương thì \(\left\{{}\begin{matrix}a\cdot\left(-1\right)+2=0\\2\cdot3+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-6\end{matrix}\right.\)

a: Phương trình thứ hai thiếu vế phải rồi bạn

23 tháng 4 2019

(x-1)(2x-1)=2x2-x-2x+1=2x2-3x+1

=>m=2

NV
15 tháng 2 2022

3.

Phương trình có 2 nghiệm khi:

\(\left\{{}\begin{matrix}m+1\ne0\\\Delta=m^2-12\left(m+1\right)\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\\left[{}\begin{matrix}m\ge6+4\sqrt{3}\\m\le6-4\sqrt{3}\end{matrix}\right.\end{matrix}\right.\) (1)

Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m}{m+1}\\x_1x_2=\dfrac{3}{m+1}\end{matrix}\right.\)

Hai nghiệm cùng lớn hơn -1 \(\Rightarrow-1< x_1\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_1+1>0\\x_1+x_2>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{m+1}-\dfrac{m}{m+1}+1>0\\-\dfrac{m}{m+1}>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{m+1}>0\\\dfrac{m+2}{m+1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>-1\)

Kết hợp (1) \(\Rightarrow\left[{}\begin{matrix}-1< m< 6-4\sqrt{3}\\m\ge6+4\sqrt{3}\end{matrix}\right.\)

Những bài này đều là dạng toán lớp 10, thi lớp 9 chắc chắn sẽ không gặp phải

NV
15 tháng 2 2022

1. Có 2 cách giải:

C1: đặt \(f\left(x\right)=x^2+2mx-3m^2\)

\(x_1< 1< x_2\Leftrightarrow1.f\left(1\right)< 0\Leftrightarrow1+2m-3m^2< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)

C2: \(\Delta'=4m^2\ge0\) nên pt luôn có 2 nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-3m^2\end{matrix}\right.\)

\(x_1< 1< x_2\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)

\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)

\(\Leftrightarrow-3m^2+2m+1< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)

NV
4 tháng 3 2022

Trừ vế cho vế:

\(\Rightarrow x^3-y^3=6\left(x^2-y^2\right)-m\left(x-y\right)\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-6\left(x+y\right)+m\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=y\\x^2+xy+y^2-6\left(x+y\right)+m=0\end{matrix}\right.\)

- Với \(x=y\Rightarrow x^3=8x^2-mx\Leftrightarrow x\left(x^2-8x+m\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-8x+m=0\end{matrix}\right.\)

Do đó hệ luôn luôn có nghiệm \(\left(x;y\right)=\left(0;0\right)\) với mọi m

Để hệ chỉ có 1 nghiệm thì \(x^2-8x+m=0\) vô nghiệm \(\Rightarrow m>16\)

Khi đó, xét pt \(x^2+xy+y^2-6\left(x+y\right)+m=0\) (1)

Ta có:

\(x^2+xy+y^2-6\left(x+y\right)+m>\dfrac{3}{4}\left(x+y\right)^2-6\left(x+y\right)+16=\dfrac{3}{4}\left(x+y-4\right)^2+4>0\)

\(\Rightarrow\) (1) vô nghiệm hay hệ có đúng 1 nghiệm \(\left(x;y\right)=\left(0;0\right)\)

Vậy \(m>16\) thì hệ có 1 nghiệm

4 tháng 3 2022

em tính nhầm cái delta>0=)). Em cảm ơn thầy ạ