Tìm tập nghiệm T của bất phương trình log π 4 log 2 x + 2 x 2 − x < 0 .
A. T = − 2 ; 1 .
B. T = − ∞ ; − 4 .
C. T = − 1 ; 1 .
D. T = 0 ; 2 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khoảng giá trị của x mà đồ thị hàm số \(y=log_2x\) nằm phía trên đường thẳng y = 2 là \(\left(4;+\infty\right)\)
\(\Rightarrow\) Tập nghiệm của bất phương trình \(log_2x>2\) là \(\left(4;+\infty\right)\)
\(\log_{\dfrac{1}{4}}x>-2\\ \Rightarrow\left\{{}\begin{matrix}x>0\\\log_{\dfrac{1}{4}}x>\log_{\dfrac{1}{4}}16\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x>0\\x< 16\end{matrix}\right.\\ \Leftrightarrow0< x< 16\)
Chọn C.
a, Điều kiện: x > 0
\(log_3\left(x\right)< 2\\ \Rightarrow0< x< 9\)
b, Điều kiện: x > 5
\(log_{\dfrac{1}{4}}\left(x-5\right)\ge-2\\ \Rightarrow x-5\le16\\ \Leftrightarrow5< x\le21\)
ĐKXĐ: \(x>1\)
\(log_2\left(x-1\right)+log_2\left(x+1\right)=3\)
\(\Leftrightarrow log_2\left(x-1\right)\left(x+1\right)=3\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=8\)
\(\Leftrightarrow x^2-9=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-3< 1\left(l\right)\end{matrix}\right.\)
Vậy tập nghiệm của pt là \(S=\left\{3\right\}\)
Đáp án B
Điều kiện x < 0 .
log π 4 log 2 x + 2 x 2 − x < 0 ⇔ log π 4 log 2 x + 2 x 2 − x < log π 4 1
⇔ log 2 x + 2 x 2 − x > 1 ⇔ log 2 x + 2 x 2 − x > log 2 2
⇔ x + 2 x 2 − x > 2 ⇔ 2 x 2 − x > 2 − x ⇔ 2 x 2 − x > x 2 − 4 x + 4.
⇔ x 2 + 3 x − 4 > 0 ⇔ x > 1 x < − 4 .
Kết hợp điều kiện ta có T = − ∞ ; − 4 là tập nghiệm của bất phương trình.