K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2017

Đáp án B

Hướng dẫn giải:  Kẻ IJ // AB

Kẻ AH SD

Ta có  A D = 1 2 M C = a 3 4

Ta có  1 A H 2 = 1 A S 2 + 1 A D 2 = 19 3 a 2

⇒ A H = a 57 19

16 tháng 3 2017

  Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

+) Hình chiếu vuông góc của SI trên mặt phẳng (ABC) là AI nên góc giữa SI và mặt phẳng (ABC) là:

(vì tam giác SIA vuông tại A nên góc SIA nhọn) ⇒ Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

+) Xét tam giác SIA vuông tại A, Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3) Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3) nên:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

+) Dựng hình bình hành ACBD, tam giác ABC đều nên tam giác ABD đều.

+) Ta có:

   AC // BD; BD ⊂ (SBD) nên AC // (SBD).

   mà SB ⊂ (SBD) nên d(AC, SB) = d(A, (SBD)).

- Gọi K là trung điểm đoạn BD, tam giác ABD đều suy ra AK ⊥ BD và Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3) mà BD ⊥ SA nên BD ⊥ (SAK).

- Dựng AH ⊥ SK; H ∈ SK.

- Lại có AH ⊥ BD suy ra AH ⊥ (SBD).

- Vậy d(A, (SBD)) = AH.

- Xét tam giác SAK vuông tại vuông tại A, đường cao AH ta có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

- Vậy d(AC, SB) = d(A, (SBD)) 

Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

27 tháng 10 2017

Đáp án B

3 tháng 12 2017

21 tháng 11 2018

Đáp án B

11 tháng 10 2019

 Đáp án B

 

1 tháng 4 2019

Đáp án B

3 tháng 9 2018

Đáp án A.

Phương pháp:

- Phương pháp tọa độ hóa.

- Công thức tính khoảng cách giữa hai đường thẳng trong không gian:

d Δ 1 ; Δ 2 = M 1 M 2 → . u 1 → ; u 2 → u 1 → ; u 2 → ,     M 1 ∈ Δ 1 ; M 2 ∈ Δ 2  

Cách giải:

Gắn hệ trục tọa độ (như hình vẽ): 

A 0 ; 0 ; 0 ,   B 0 ; a ; 0 ,   C a 3 2 ; a 2 ; 0 ,   S 0 ; 0 ; 3 a  

M, N lần lượt là trung điểm của AB, SC

⇒ M 0 ; a 2 ; 0 ,   N a 3 4 ; a 4 ; 3 a 2  

⇒ A N → = a 3 4 ; a 4 ; 3 a 2 ;     C M → = − a 3 2 ; 0 ; 0  

Đường thẳng AN có 1 VTCP u 1 → = 3 ; 1 ; 6 ,  

đi qua điểm A 0 ; 0 ; 0 .  

Đường thẳng CM có 1 VTCP u 1 → = 1 ; 0 ; 0 ,  đi qua điểm  A 0 ; a 2 ; 0 .

A M → = 0 ; a 2 ; 0 ,   u 1 → ; u 2 → = 0 ; 6 ; − 1  

d A N ; C M = A M → . u 1 → ; u 2 → u 1 → ; u 2 → = 0.0 + a 2 .6 + 0. − 1 0 2 + 6 2 + 1 2 = 3 a 37

 

26 tháng 11 2019

25 tháng 7 2018