Tính thể tích chóp S.ABCD có đáy là hình vuông cạnh bằng a, mặt bên SAB là tam giác đều nằm trong mặt phẳng vuông góc với đáy.
A . a 3 3 2
B . a 3 3
C . a 3 3 3
D . a 3 3 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
Ta có: SA=SB=AB=a 3
Gọi H là trung điểm của AB.
Do (SAB) ⊥ (ABCD) nên SH ⊥ (ABCD). Khi đó SH= 3 a 2
Diện tích đáy S A B C D = 3 a 2
Vậy thể tích khối chóp
V
S
.
A
B
C
D
=
1
3
S
H
.
S
A
B
C
D
=
3
a
2
2
Gọi H là trung điểm AB \(\Rightarrow SH\perp\left(ABCD\right)\)
\(SH=\dfrac{AB\sqrt{3}}{2}=\dfrac{a\sqrt{6}}{2}\)
\(V=\dfrac{1}{3}SH.AB^2=\dfrac{1}{3}.\dfrac{a\sqrt{6}}{2}.2a^2=\dfrac{a^3\sqrt{6}}{3}\)
Đáp án D
Gọi M là trung điểm của AB
=> S M ⊥ A B ⇒ S M ⊥ A B C D S M = a 3 2 ⇒ V = 1 3 . S M . A B . A D = 1 3 . a 3 2 . a . a = a 3 3 6
Đáp án là A
Gọi H là trung điểm A B .
Ta có S A B ⊥ A B C D S A B ∩ A B C D = A B S H ⊂ S A B ; S H ⊥ A B ⇒ S H ⊥ A B C D .
Khi đó: V S . A B C D = 1 3 S H . S A B C D = 1 3 . a 3 2 . a 2 = a 3 3 6 .
Đáp án D
Ta có diện tích đáy S A B C D = a 2
Chiều cao SH = a 3 2
Từ đây ta tính được thể tích là: V S . A B C D = a 3 3 6
=> Chọn đáp án D