Tìm n để \(A=n\left(5n+3\right)\)chia hết cho n + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{A}{n}=\frac{4n+4}{n}=4+\frac{4}{n}\)
\(\Rightarrow n\in U\left(4\right)\)
Lập bảng tiếp nhé!
\(\frac{B}{n}=\frac{5n+6}{n}=5+\frac{6}{n}\)
Lập bảng
\(2.\)
a)\(\left(\frac{3}{29}-\frac{1}{5}\right)\cdot\frac{29}{3}=\frac{3}{29}\cdot\frac{29}{3}-\frac{1}{5}\cdot\frac{29}{3}=1-\left(1+\frac{14}{15}\right)=1-1-\frac{14}{15}=\frac{14}{15}\)
b)\(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}=\frac{5}{9}\cdot\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)
1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)
\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)
hay \(n\in\left\{0;1;-1\right\}\)
$A=\frac{5n+1}{n+1}=\frac{5(n+1)-4}{n+1}=5-\frac{4}{n+1}\in \mathbb{Z}$
$\Leftrightarrow n+1\in Ư(4)=\left\{-4;-2;-1;1;2;4\right\}$
Mà $n\in\mathbb{N}$
$\Rightarrow n\in\left\{0;1;3\right\}$
\(A=\dfrac{5n+1}{n+1}=\dfrac{5\left(n+1\right)-4}{n+1}=\dfrac{5\left(n+1\right)}{n+1}-\dfrac{4}{n+1}=5-\dfrac{4}{n+1}\).ĐK:n≠-1
để \(Anguy\text{ê}n.th\text{ì}4⋮(n+1)\\ \Rightarrow n+1\in\text{Ư}\left(4\right)=\left\{1;2;4\right\}\)
ta có bảng sau :
n+1 | 1 | 2 | 4 |
n | 0 | 1 | 3 |
vậy....
A ) Ta có : n chia hết cho n và để n + 4 chia hết cho n thì 4 phải chia hết cho n .
=> n sẽ là ước của 4 .
Ư(4) = { 1 ; 2 ; 4 }
Vậy : n = 1 ; 2 hoặc 4 .
a) Vì n chia hết cho n nên n+4 cũng chia hết cho n \(\Leftrightarrow\)4 chia hết cho n
\(\Leftrightarrow\)n là ước của 4
\(\Leftrightarrow\)n \(\in\){ 1;2;4 }
Vậy với n \(\in\){ 1;2;4 } thì n+4 chia hết cho n
kb nha