1, Tìm chữ số tận cùng của :
a, 13 .22004
b, 22015 + 32014
làm giúp mình với ạ!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3^{2018}=3^{4.504}.3^2=...1.9=...9\)
Vậy chữ số tận cùng là 9
b) \(2^{1000}=2^{4.250}=...6\)
Vậy chữ số tận cùng là 6
a)Vì 2020 chia hết cho 4 nên chữ số tận cùng của số \(3^{2020}\) là số 1
b) Vì 2021 chia 4 dư 1 nên chữ số tận cùng của số \(3^{2021}\) là số 3
1. Số số hạng của A là : (2013-13):10+1=201 (số)
Chữ số tận cùng của A là : \(\left(\overline{...3}\right)\times201=\overline{...3}\)
Vậy chữ số tận cùng của A là 3.
2. Số số hạng của A là : (2007-17):10+1=200 (số)
Chữ số tận cùng của A là : \(\left(\overline{...7}\right)\times200=\overline{...0}\)
Vậy chữ số tận cùng của A là 0.
Chúc bạn học tốt!
#Huyền#
+ \(2^{31}\cdot5=2^{30}\cdot2\cdot5\)
\(=2^{30}\cdot10\)tận cùng bằng chữ số 0.
+ Tương tự \(2^{2018}\cdot5^2\)tận cùng bằng chữ số 0
+ Các số có tận cùng là 0 , 1 , 5 , 6 nâng lên lũy thừa bậc mấy cũng tận cùng là 0 , 1 , 5 , 6.
\(2^{2018}=2^{2016}\cdot4\)\(=\left(2^4\right)^{504}\cdot4\)
\(=16^{504}\cdot4\)\(=\left(...6\right)\cdot4=\left(...4\right)\)( \(16^{504}\)tận cùng là 6 )
Vậy \(2^{2018}\)tận cùng là 4
a, Áp dụng các t/c các số tận cùng là 1 và 6khi tăng bậc số tận cùng vẫn là 6 và 6.
22015=2.22014=2.41007=2.4.41006=8.16503=8.(...6)=(...8)
32014=91007=9.91006=9.81503=9.(...1)=(...9)
=22015 + 32014 =(...8)+(...9)=(...7)
b, 172023≡72023=7.72022=7.491011=7.49.491010=7.49.2401505=(...3)
Ta có: \(2^1=..2\)
\(2^2=..4\)
\(2^3=..8\)
\(2^4=..6\)
\(2^5=..2\)
\(2^6=..4\)
\(...\)
Lần lượt như vậy, ta sẽ có:
\(2^{4k+1}=..2\)
\(2^{4k+2}=..4\)
\(2^{4k+3}=..8\)
\(2^{4k}=..6\)
Ta có: \(2015=4.503+3\)
\(=>2015=4k+3\)
\(=>2^{2015}=..8\)
Ta lại có: \(3^1=..3\)
\(3^2=..9\)
\(3^3=..7\)
\(3^4=..1\)
\(3^5=..3\)
\(3^6=..9\)
\(...\)
Lần lượt như vậy,ta có quy luật:
\(3^{4k+1}=..3\)
\(3^{4k+2}=..9\)
\(3^{4k+3}=..7\)
\(3^{4k}=..1\)
Ta có: \(2014=4.503+2\)
\(=>2014=4k+2\)
\(=>3^{2014}=..9\)
VẬY: \(2^{2015}+3^{2014}=..8+..9=..7\)
=> \(2^{2015}+3^{2014}\) có tận cùng là 7.
------------------------------------------------------------
Ta có: \(17^1=..7\)
\(17^2=..9\)
\(17^3=..3\)
\(17^4=..1\)
\(17^5=..7\)
\(17^6=..9\)
Lần lượt như vậy, ta có quy luật:
\(17^{4k+1}=..7\)
\(17^{4k+2}=..9\)
\(17^{4k+3}=..3\)
\(17^{4k}=..1\)
TA CÓ; \(2023=4.505+3\)
\(=>2023=4k+3\)
\(=>17^{2023}=..3\)
Vậy \(17^{2023}\) có tận cùng là 3.
a là 8 b là 6