Tìm số hạng không chứa x trong khai triển 2 x - 3 x 3 2 n với x ≠ 0 , biết n là số nguyên dương thỏa mãn C n 3 + 2 n = A n + 1 2 .
A. - C 16 12 . 2 4 . 3 12 .
B. C 16 0 . 2 16 .
C. C 16 12 . 2 4 . 3 12 .
D. C 16 16 . 2 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ phương trình C n 3 + 2 n = A n + 1 2 nên n = 8
Với n = 8, ta có
2 x - 3 x 3 2 n = 2 x - 3 x 3 16 = ∑ k = 0 16 . C 16 k . 2 x 16 - k - 3 x 3 = ∑ k = 0 16 . C 16 k . 2 x 16 - k . - 3 k . x 16 - 4 k 3
Số hạng không chứa x ứng với 16 - 4 k 3 = 0 ⇔ k = 12
số hạng cần tìm C 16 12 . 2 4 . 3 12
Chọn C
Chọn A
Theo đề bài ta có: .
Lại theo tính chất của cấp số cộng có:
Khi đó số hạng tổng quát trong khai triển x - 1 x 2 10
Số hạng không chứa x trong khai triển trên ứng với
Vậy hệ số của số hạng không chứa x trong khai triển trên là
\(C^1_n+C^2_n=15\)
=>\(n+\dfrac{n!}{\left(n-2\right)!\cdot2!}=15\)
=>\(n+\dfrac{n^2-n}{2}=15\)
=>2n+n^2-n=30
=>n^2+n-30=0
=>n=5
=>(x+2/x^4)^5
SHTQ là: \(C^k_5\cdot x^{5-k}\cdot\left(\dfrac{2}{x^4}\right)^k=C^k_5\cdot x^{5-5k}\cdot2^k\)
SỐ hạng ko chứa x tương ứng với 5-5k=0
=>k=1
=>Số hạng đó là 5*2=10
Chọn đáp án D.
Số hạng này không chứa x khi và chỉ khi
Suy ra số hạng không chứa x trong khai triển trên là
Đáp án D.
Phương pháp
Sử dụng công thức C n k = n ! k ! n − k ! tìm n.
Sử dụng khai triển nhị thức Newton
a + b n = ∑ k = 0 n C n k . a n − k . b k
Cách giải