Dựng hình thang ABCD, biết hai đáy AB = lcm, CD = 4cm, hai cạnh bên AD = 2cm, BC = 3cm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hân tích: Giả sử hình thang ABCD dựng được thỏa mãn điều kiện bài toán.
Qua A kẻ đường thẳng song song với BC cắt CD tại E ta thấy tam giác AED xác định vì biết ba cạnh, ta cần xác định đỉnh B và C
– Đỉnh C nằm trên tia DE, cách D một khoảng bẳng 4cm
– Đỉnh B nằm trên đường thẳng đi qua A song song với đường thẳng DE và cách A một khoảng bằng 1cm.
Cách dựng:
QUẢNG CÁO
– Dựng ∆ ADE biết AD = 2cm, DE = 3cm, AE = 3cm
– Trên tia DE dựng điểm C sao cho DC = 4cm
– Dựng đường thẳng đi qua A và song song với DC, lấy điểm B sao cho AB = 1cm. Nối BC ta có hình thang ABCD cần dựng
Chứng minh: Thật vậy theo cách dựng ta có AB // CD nên tứ giác ABCD là hình thang.
Ta có: AD = 2cm, DC = 4cm, AB = 1cm, hình thang ABCE có hai cạnh đáy AB = EC = 1cm nên BC = AE = 3cm.
Hình thang ABCD thỏa mãn điều kiện bài toán.
Biện luận: Tam giác ADE luôn dựng được nên hình thang ABCD dựng được, bài toán có một nghiệm hình.
a) Phân tích
Giả sử dựng được hình thang ABCD thỏa mãn yêu cầu đề bài.
Ta dựng được tam giác ADC vì biết hai cạnh và góc xen giữa.
Điểm B phải thỏa mãn hai điều kiện:
+ B nằm trên đường thẳng qua A và song song với CD
+ CB = 3cm nên B thuộc cung tròn tâm C bán kính 3cm.
b) Cách dựng:
- Dựng tam giác ADC vuông tại D với DC = 3cm, DA = 2cm.
- Dựng tia Ax // CD (tia Ax về phía C).
- Dựng (C; 3cm) cắt tia Ax tại hai điểm B1 và B2.
Hình thang ABCD với B trùng với B1 hoặc B trùng với B2 là hình thang cần dựng.
c) Chứng minh: Theo cách dựng thì tứ giác ABCD hoặc AB1CD có góc ∠D = 90º, đáy CD = 3cm, cạnh bên AD = 2cm, cạnh bên BC = 3cm nên đó là hình thang vuông thỏa mãn điều kiện đề bài.
d) Biện luận: Ta dựng được hai hình thang thỏa mãn điều kiện đề bài.
a) Phân tích
Giả sử dựng được hình thang ABCD thỏa mãn yêu cầu đề bài.
Ta dựng được tam giác ADC vì biết hai cạnh và góc xen giữa.
Điểm B phải thỏa mãn hai điều kiện:
+ B nằm trên đường thẳng qua A và song song với CD
+ CB = 3cm nên B thuộc cung tròn tâm C bán kính 3cm.
b) Cách dựng:
- Dựng tam giác ADC vuông tại D với DC = 3cm, DA = 2cm.
- Dựng tia Ax // CD (tia Ax về phía C).
- Dựng (C; 3cm) cắt tia Ax tại hai điểm B1 và B2.
Hình thang ABCD với B trùng với B1 hoặc B trùng với B2 là hình thang cần dựng.
c) Chứng minh: Theo cách dựng thì tứ giác ABCD hoặc AB1CD có góc ∠D = 90º, đáy CD = 3cm, cạnh bên AD = 2cm, cạnh bên BC = 3cm nên đó là hình thang vuông thỏa mãn điều kiện đề bài.
d) Biện luận: Ta dựng được hai hình thang thỏa mãn điều kiện đề bài.
* Dựng hình:
- Dựng tam giác ADC có AD = 2cm, DC = 4cm, CA = 5cm.
- Dựng tia Ax song song với CD.
- Đường tròn (C; 3cm) cắt Ax tại B1 và B2.
Hình thang ABCD với B ≡ B1 hoặc B ≡ B2 là hình thang cần dựng.
* Chứng minh
+ Tứ giác ABCD có AD = 2cm, DC = 4cm, CA = 5cm.
+ Ax // CD ⇒ AB // CD ⇒ ABCD là hình thang.
+ B ∈ (C; 3cm) ⇒ BC = 3cm.
Phân tích: Giả sử hình thang ABCD dựng được thỏa mãn điều kiện bài toán
Từ B kẻ đường thẳng song song với AC cắt CD tại E. Tứ giác ABEC là hình thang có hai cạnh bên song song nên CE = AB = l cm, BE = AC = 3cm
Tam giác BDE xác định được, ta cần xác định đỉnh C và A.
- Đỉnh C nằm trên tia DE cách D một khoảng bằng 3cm
- Đỉnh A nằm trên đường thẳng đi qua B và song song với CD, A cách C một khoảng bằng 3 cm. (ABCD là hình thang cân nên AC = BD = 3 cm)
Cách dựng:
- Dựng ∆ BDE biết BD = 3cm, BE = 3cm , DE = 4cm
- Dựng điểm C trên tia DE sao cho DC = 3cm
- Dựng đường thẳng d đi qua B song song với CD.
- Dựng cung tròn tâm C bán kính 3 cm cắt đường thắng d tại A. Nối AD ta có hình thang ABCD dựng được.
Chứng minh: Thật vậy theo cách dựng ta có AB // CD.
Tứ giác ABCD là hình thang. CD = 3cm, AC = BD = 3cm. Vậy ABCD là hình thang cân thỏa mãn điều kiện bài toán.
Bài toán có một nghiệm hình.
Phân tích:
Giả sử hình thang ABCD dựng được thỏa mãn điều kiện bài toán.
Qua A kẻ đường thẳng song song với BC cắt CD tại E ta thấy tam giác AED xác định vì biết ba cạnh, ta cần xác định đình B và C.
- Đỉnh C nằm trên tia DE, cách D một khoảng bằng 4cm.
- Đỉnh B nằm trên đường thẳng đi qua A song song với đường thẳng DE và cách A một khoảng bằng lcm.
Cách dựng:
- Dựng ∆ ADE biết AD = 2cm, DE = 3cm, AE = 3cm
- Trên tia DE dựng điểm C sao cho DC = 4cm
- Dựng đường thẳng đi qua A và song song với DC, lấy điểm B sao cho AB = lcm. Nối BC ta có hình thang ABCD cần dựng.
Chứng minh:
Thật vậy, theo cách dựng ta có AB // CD nên tứ giác ABCD là hình thang.
Ta có: AD = 2cm, DC = 4cm, AB= lcm, hình thang ABCE có hai cạnh đáy AB = EC = 1cm nên BC = AE = 3cm.
Hình thang ABCD thỏa mãn điều kiện bài toán.
Biện luận: Tam giác ADB luôn dựng được nên hình thang ABCD dựng được, bài toán có một nghiệm hình.