K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2018

29 tháng 7 2023

Giúp tui với mn ơi cần gấp lắm ròi :<

Bạn cho hình vẽ đi bạn

30 tháng 8 2023

loading...

a) Vẽ tia By' là tia đối của tia By

Ta có:

∠ABy' + ∠ABy = 180⁰ (kề bù)

⇒ ∠ABy' = 180⁰ - ∠ABy

= 180⁰ - 135⁰

= 45⁰

⇒ ∠ABy' = ∠BAx = 45⁰

Mà ∠ABy' và ∠BAx là hai góc so le trong

⇒ By // Ax

b) Ta có:

∠CBy' = ∠ABC - ∠ABy'

= 75⁰ - 45⁰

= 30⁰

⇒ ∠CBy' = ∠BCz = 30⁰

Mà ∠CBy' và ∠BCz là hai góc so le trong

⇒ By // Cz

5 tháng 10 2021

\(a,Ax//By\Rightarrow\widehat{ABy}=\widehat{BAx}=120^0\left(so.le.trong\right)\\ b,\widehat{ABy}=\widehat{BCz}\left(=120^0\right)\)

Mà 2 góc này ở vị trí đồng vị nên \(By//Cz\)

Mà \(By//Ax\) nên \(Cz//Ax\)

Vậy có 3 cặp tia song song là \(Ax//By;By//Cz;Cz//Ax\)

28 tháng 9 2021

\(a,\widehat{xAB}+\widehat{xAt}=180^0\left(kề.bù\right)\\ \Rightarrow\widehat{xAB}=180^0-60^0=120^0\\ \Rightarrow\widehat{xAB}=\widehat{yBA}\left(=120^0\right)\)

Mà 2 góc này ở vị trí so le trong nên \(Ax//By\)

\(b,\widehat{yBC}+\widehat{ABC}+\widehat{yBA}=360^0\\ \Rightarrow\widehat{yBC}=360^0-120^0-90^0=150^0\\ \Rightarrow\widehat{yBC}=\widehat{BCz}\left(=150^0\right)\)

Mà 2 góc này ở vị trí so le trong nên \(By//Cz\)

 

1 tháng 4 2022

\(2x-2y=by+cz-cz-ax=by-ax\)

\(\Rightarrow2x-2y=by-ax\)

\(\Rightarrow2x+ax=2y+by\)

\(\Rightarrow x\left(a+2\right)=y\left(b+2\right)\)

\(\Rightarrow a+2=\dfrac{y\left(b+2\right)}{x}\)

\(2z-2y=ax+by-cz-ax=by-cz\)

\(\Rightarrow2z+cz=2y+by\)

\(\Rightarrow z\left(c+2\right)=y\left(b+2\right)\)

\(\Rightarrow c+2=\dfrac{y\left(b+2\right)}{z}\)

\(A=\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}=\dfrac{2}{\dfrac{y\left(b+2\right)}{x}}+\dfrac{2}{b+2}+\dfrac{2}{\dfrac{y\left(b+2\right)}{z}}=\dfrac{2x}{y\left(b+2\right)}+\dfrac{2}{b+2}+\dfrac{2z}{y\left(b+2\right)}=\dfrac{2x}{y\left(b+2\right)}+\dfrac{2y}{y\left(b+2\right)}+\dfrac{2z}{y\left(b+2\right)}=\dfrac{2x+2y+2z}{y\left(b+2\right)}=\dfrac{by+cz+cz+ax+ax+by}{by+2y}=\dfrac{2\left(ax+by+cz\right)}{by+cz+ax}=2\)

 

31 tháng 10 2021

Ta có ax + by = c ; by + cz = a

<=> cz - ax = a - c (1)

mà cz + ax = b (2) 

Từ (1) và (2) => \(cz=\frac{a-c+b}{2}\Rightarrow z=\frac{a-c+b}{2c}\Rightarrow z+1=\frac{a+b+c}{2c}\)

=> \(\frac{1}{z+1}=\frac{2c}{a+b+c}\)

Tương tự ta có \(\frac{1}{x+1}=\frac{2a}{a+b+c}\)\(\frac{1}{y+1}=\frac{2b}{a+b+c}\)

=> P = \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)

a: \(ax+by+cz\)

\(=x^3-xyz+y^3-xyz+z^3-xyz\)

\(=x^3+y^3+z^3-3xyz\)