K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2020

Bài 5:

Tgiac ABC vuông cân tại A => góc CBA = 45 độ

Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB

Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC

=> góc D = 45/2 = 22,5 độ

và góc ACD = 22,5 + 45 = 67,5 độ

Vậy số đo các góc của tgiac ACD là ...

Bài 6: 

Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ

Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ

cmtt với tgiac CBE => góc DEB = 70 độ

=> góc DBE = 180-70-70 = 40 độ

Bài 7: 

Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)

Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C

=> đpcm

Bài 8: mai làm hihi

18 tháng 2 2020

bài này dễ sao không biết

3 tháng 2 2016

bạn ơi giải bài này cho mình nha, thanks

5 tháng 5 2021

Cho tam giác ABC cân tại A. Gọi M là một điểm nằm trên cạnh BC sao cho MB<MC. Lấy điểm O trên đoạn thẳng AM. Chứng minh rằng góc AOB > góc AOC.

18 tháng 1 2023

1 2 1 1 2 1 2 A M N B C

a,Xét tam giác ABN và tam giác ACM có :

AM=AN (gt)

Góc A chung 

AB=AC(gt)

=> tam giác ABN = tam giác ACM (c-g-c)

b,theo câu a =>AMC^=ANB^(1)

Ta có : AM=AN =>tam giác AMN cân tại A => AMN^=ANM^(2)

Từ 1 và 2 =>MNI^=NMI^(3)

Vì B1^=C1^

B^=C^

=>B^-B1^=C-C1^

=>C2^=B2^(4)

Mặt khác : I1^=I2^(đối đỉnh) (5)

Từ 3 ; 4 và 5 => MNI^+NMI^+I1^=180*=I2^+B2^+C2^(tổng 3 góc của 1 tam giác )

=> MNI^+NMI^ / 2 = B2^+C2^ / 2

=> B2^=MNI^

Vì 2 góc này ở vị trí sole trong  và bằng nhau 

=> MN // BC

Xét tứ giác ABNC có

M là trung điểm chung của AN và BC

AB=AC

=>ABNC là hình bình hành

=>BN=AC=AB

=>ΔBAN cân tạiB

12 tháng 1 2023

            Xét \(\Delta AMB\) và \(\Delta NMC\) có :

                     \(\widehat{AMB}=\widehat{NMC}\) ( đối đỉnh )

                     AM = NM ( gt )

                      MB = MC ( M là trung điểm của BC )

\(\Rightarrow\Delta AMB=\Delta NMC\) ( c.g.c )

\(\Rightarrow\widehat{BAM}=\widehat{CNM}\) ( 2 góc tương ứng )

mà 2 góc này ở vị trí so le trong 

\(\Rightarrow AB//NC\) (đpcm)

                Xét \(\Delta AMCvà\Delta NMBcó\) :

                           \(\widehat{AMC}=\widehat{NMB}\) ( đối đỉnh )

                           AM      =  NM ( gt )

                           MC      =   MB   ( M là trung điểm của BC )

\(\Rightarrow\Delta AMC=\Delta NMB\) ( c.g.c )

          Xét \(\Delta AMBvà\Delta AMCcó\) :

                   AM chung

                  MB       = MC  ( M là trung điểm của BC )

                  AB       = AC    (\(\Delta ABC\) cân tại A )

  \(\Rightarrow\Delta AMB=\Delta AMC\) ( c.c.c )

mà \(\Delta NMB=\Delta AMC\)

\(\Rightarrow\Delta AMB=\Delta NMB\) ( tính chất bắc cầu )

\(\Rightarrow BA=BN\) ( 2 cạnh tương ứng )

\(\Rightarrow\Delta ABN\) cân tại B ( đpcm )