Hàm số f ( x ) = x - 1 2 + x - 2 2 + . . . + x - 2019 2 x ∈ ℝ đạt giá trị nhỏ nhất khi x bằng
A. 2020
B. 1010
C. 2019
D. 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này không khó nghe em chẳng qua là nó hơi dài
em phải nhớ công thức tính tổng của dãy số, công thức tổng quát ấy là n.(a1+an)/2 (n là số số hạng, a1 là phần tử thứ nhất và an là phần tử thứ n)
số số hạng thì dễ rồi đúng k
còn a1+an là bằng f(1/2019)+f(2018/2019)
em thế f(1/2019) vào f(x) cái kia cũng vậy
xong em chịu khó nhân vào có dạng là a^n.a^m
vậy là ra thôi em
Ta có
lim x → 1 f x - f 1 x - 1 = lim x → 1 x - 1 x - 2 x - 3 . . . x - 2019 x - 1 = lim x → 1 x - 1 x - 2 x - 3 . . . x - 2019 = - 1 . - 2 . - 3 . . . . - 2018 = 2018 !
Đáp án C
Đáp án D
Ta có Đáp án D
Ta có y’ = –f’(1 – x) + 2018 = –[1–(1–x)][(1–x)+2]g(1–x) – 2018 + 2018
= –x(3–x)g(1–x)
Suy ra (vì g(1–x) < 0, ∀ x ∈ R )
Vậy hàm số đã cho nghịch biến trên khoảng 3 ; + ∞
Đáp án B
Cách 1:
Vậy hàm số đạt giá trị nhỏ nhất tại x=1010
Cách 2: thuypham
Do đó f(x) đạt giá trị nhỏ nhất khi x=1010