K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2017

Đáp án A.

Đặt t = 2 x , t > 0 ⇒  pt  ⇔ 2 t 2 - 5 t + 2 = 0 ⇔ [ t = 2 t = 1 2 ⇔ [ 2 x = 2 2 x = 1 2 ⇔ [ x = 1 x = - 1 ⇒ x 1 + x 2 = 0 .

1A

2D

3D

4C

5D

Câu 1: D

Câu 2: A

Câu 3: B

Câu 4: A

Câu 5: C

Câu 6: D

6 tháng 3 2022

D

 A

 B

A

 C

D

NV
2 tháng 11 2021

\(1-2cos^2x-sinx=0\)

\(\Leftrightarrow1-2\left(1-sin^2x\right)-sinx=0\)

\(\Leftrightarrow2sin^2x-sinx-1=0\Rightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow x=\left\{\dfrac{\pi}{2};\dfrac{7\pi}{6};\dfrac{11\pi}{6};\dfrac{5\pi}{2}\right\}\)

\(\Rightarrow\sum x=6\pi\)

Câu 1:  Phương trình (3,5x−7)(2,1x−6,3)=0 có tổng các nghiệm bằngA:6                      B:3               C:5                D:4Câu 2: Nghiệm của phương trình 4(3x−2)−3(x−4)=7x+20 là x=a.Chọn khẳng định đúng:A:6<a<=8                    B:5<a<7               C:7<a<8            D:8<a<=10   Câu 3: Tập nghiệm của phương trình (x−2)(x+2)=0 là...
Đọc tiếp

Câu 1:  Phương trình (3,5x−7)(2,1x−6,3)=0 có tổng các nghiệm bằng

A:6                      B:3               C:5                D:4

Câu 2: Nghiệm của phương trình 4(3x−2)−3(x−4)=7x+20 là x=a.

Chọn khẳng định đúng:

A:6<a<=8                    B:5<a<7               C:7<a<8            D:8<a<=10   

Câu 3: Tập nghiệm của phương trình (x−2)(x+2)=0 là :

A:S={-2;2}            B:S={2}           C:S={vô nghiệm}           D:S={-2}

Câu 4: Tổng giá trị các nghiệm của hai phương trình bên dưới là:

(x^2+x+1)(6−2x)=0 và (8x−4)(x^2+2x+2)=0

A:13/5             B:13/2          C:7/2         D:13/3

Câu 5: Các giá trị k thỏa mãn phương trình (3x+2k−5)(x−3k+1)=0 có nghiệm x=1 là:

A:k=2 và k=1          B:k=3 và k=1/2             C:k=1 và k=2/3         D:k=2 và k=1/3

Câu 6: Tập nghiệm của phương trình x^2+3x−4=0 là

A:S={-4;1}           B:S={vô nghiệm}           C:S={-1;4}        D:S={4;1}

Câu 7: Phương trình (3x−2)(2(x+3)/7−(4x−3)/5)=0 có 2 nghiệm x1,x2 Tích x1.x2 có giá trị bằng

A:x1.x2=17/3       B:x1.x2=5/9           C:x1.x2=17/9          D:x1.x2=17/6

Câu 8: Cho phương trình  (x−5)(3−2x)(3x+4)=0  và (2x−1)(3x+2)(5−x)=0 .

Tổng giá trị các nghiệm của 2 phương trình trên là:

A:11          B:9           C:12           D:10

Câu 9: Phương trình (3−2x)(6x+4)(5−8x)=0. Nghiệm lớn nhất của phương trình là:

A:x=2/3           B:x=8/5         C:x=3/2         D:x=5/8

Câu 10: Phương trình (4x−10)(24+5x)=0 có nghiệm là:

A:x=5/2 và x=24/5     B:x=-5/2 và x=-24/5              C:x=5/2 và x=-24/5

D:x=-5/2 và x=24/5

2
23 tháng 2 2021

1C

3A

4C

5C

6A

9C

10C

23 tháng 2 2021

1.C

2.

3.A

4.C

5.C

6.A

7.

8.

9.C

10.C

24 tháng 2 2022

a) Thay \(x=0\) vào phương trình ta có:

\(\left(m-1\right).0^2-2m.0+m+1=0.\\ \Leftrightarrow m+1=0.\\ \Leftrightarrow m=-1.\)

b) Ta có: \(\Delta'=m^2-\left(m-1\right)\left(m+1\right).\)

 \(\Delta'=m^2-\left(m^2-1\right).\\ =m^2-m^2+1.\\ =1>0.\)

\(\Rightarrow\) Phương trình có 2 nghiệm phân biệt \(x_1;x_2.\)

Theo Viet: \(\left\{{}\begin{matrix}x_1.x_2=\dfrac{m+1}{m-1}.\\x_1+x_2=\dfrac{2m}{m-1}.\left(1\right)\end{matrix}\right.\)

Theo đề bài: \(x_1.x_2=5.\)

\(\Rightarrow\dfrac{m+1}{m-1}=5.\\ \Leftrightarrow m+1=5m-5.\\ \Leftrightarrow4m-6=0.\\ \Leftrightarrow m=\dfrac{3}{2}.\)

Thay \(m=\dfrac{3}{2}\) vào \(\left(1\right):\)

\(x_1+x_2=\) \(\dfrac{2.\dfrac{3}{2}}{\dfrac{3}{2}-1}=\dfrac{3}{\dfrac{1}{2}}=6.\)

6 tháng 9 2019

a) 3x – y = 2 (1)

⇔ y = 3x – 2.

Vậy phương trình có nghiệm tổng quát là (x; 3x – 2) (x ∈ R).

Đường thẳng biểu diễn tập nghiệm của phương trình (1) là đường thẳng y = 3x – 2 (Hình vẽ).

   + Tại x = 2/3 thì y = 0 ⇒ đường thẳng y = 3x – 2 đi qua điểm (2/3 ; 0).

   + Tại x = 0 thì y = -2 ⇒ đường thẳng y = 3x – 2 đi qua điểm (0; -2).

Vậy đường thẳng y = 3x – 2 là đường thẳng đi qua điểm (2/3 ; 0) và (0; -2).

Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) x + 5y = 3 (2)

⇔ x = 3 – 5y

Vậy phương trình có nghiệm tổng quát là (3 – 5y; y) (y ∈ R).

Đường thẳng biểu diễn tập nghiệm của (2) là đường thẳng x + 5y = 3.

   + Tại y = 0 thì x = 3 ⇒ Đường thẳng đi qua điểm (3; 0).

   + Tại x = 0 thì y=3/5 ⇒ Đường thẳng đi qua điểm (0; 3/5).

Vậy đường thẳng x + 5y = 3 là đường thẳng đi qua hai điểm (3; 0) và (0; 3/5).

Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

c) 4x – 3y = -1

⇔ 3y = 4x + 1

⇔ Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có nghiệm tổng quát là  (x;4/3x+1/3)(x ∈ R).

Đường thẳng biểu diễn tập nghiệm phương trình là đường thẳng 4x – 3y = -1.

   + Tại x = 0 thì y = 1/3

Đường thẳng đi qua điểm (0;1/3) .

   + Tại y = 0 thì x = -1/4

Đường thẳng đi qua điểm (-1/4;0) .

Vậy đường thẳng 4x – 3y = -1 đi qua (0;1/3) và  (-1/4;0).

Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

d) x + 5y = 0

⇔ x = -5y.

Vậy nghiệm tổng quát của phương trình là (-5y; y) (y ∈ R).

Đường thẳng biểu diễn nghiệm của phương trình là đường thẳng x + 5y = 0.

   + Tại x = 0 thì y = 0 ⇒ Đường thẳng đi qua gốc tọa độ.

   + Tại x = 5 thì y = -1 ⇒ Đường thẳng đi qua điểm (5; -1).

Vậy đường thẳng x + 5y = 0 đi qua gốc tọa độ và điểm (5; -1).

Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

e) 4x + 0y = -2

⇔ 4x = -2 ⇔ Giải bài tập Toán lớp 9 | Giải Toán lớp 9

Phương trình có nghiệm tổng quát (-0,5; y)(y ∈ R).

Đường thẳng biểu diễn tập nghiệm là đường thẳng x = -0,5 đi qua điểm (-0,5; 0) và song song với trục tung.

Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

f) 0x + 2y = 5

Giải bài tập Toán lớp 9 | Giải Toán lớp 9

Phương trình có nghiệm tổng quát (x; 2,5) (x ∈ R).

Đường thẳng biểu diễn tập nghiệm là đường thẳng y = 2,5 đi qua điểm (0; 2,5) và song song với trục hoành.

Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

28 tháng 5 2015

a) x = 0 là nghiệm của phương trình

=> (m-1).02 -2.m.0 + m + 1 = 0

<=> m + 1 = 0 <=> m = -1

vậy m = -1 thì pt có nghiệm là x = 0

b) PT có 2 nghiệm thì trước hết pt đã cho là phương trình bậc 2 <=> m - 1\(\ne\) 0 <=> m \(\ne\)1

 \(\Delta\)' = (-m)2 - (m - 1)(m +1) = m2 - (m2 - 1) = 1 > 0

=> phương trình đã cho có 2 nghiệm là:

x1 = \(\frac{m+1}{m-1}\) ; x2 = \(\frac{m-1}{m-1}\) = 1

+) Để x1 .x2 = 5 <=> \(\frac{m+1}{m-1}\) = 5 <=> m +1 = 5( m - 1)

<=> m +1 = 5m - 5

<=> 6 = 4m <=> m = 3/2 (Thoả mãn)

+) Khi đó x1  + x2 = \(\frac{m+1}{m-1}\) + 1 = \(\frac{m+1+m-1}{m-1}=\frac{2m}{m-1}=\frac{2.\frac{3}{2}}{\frac{3}{2}-1}=\frac{3}{\frac{1}{2}}=6\)

21 tháng 5 2020

Mình không đồng ý với phần tìm đen-ta của bạn Trần Thị Loan

Phương trình (m-1)x2 - 2mx + m + 1 = 0 ( a=m-1; b=-2m; c=m+1)

​đen-ta = (-2m)2 - 4.(m-1).(m=1)=4

Vì đen-ta = 4 > 0 nên phương trình có 2 nghiệm phân biệt với mọi m

NV
24 tháng 12 2020

\(\Leftrightarrow x^2-4x+5+3\sqrt{x^2-4x+5}-2=0\)

Đặt \(\sqrt{x^2-4x+5}=t>0\)

\(\Rightarrow t^2+3t-2=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{-3+\sqrt{17}}{2}\\t=\dfrac{-3-\sqrt{17}}{2}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow x^2-4x+5=\dfrac{13-3\sqrt{17}}{2}\)

\(\Leftrightarrow x^2-4x+\dfrac{-3+3\sqrt{17}}{2}=0\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4^2-2\left(\dfrac{-3+3\sqrt{17}}{2}\right)=19-3\sqrt{17}\)

6 tháng 1 2021

(x-1)(x-3) =x^2-4x+3 chứ ạ?

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0a) Giải phương trình với m = -2b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1c) Tìm các giá trị của m để phương trình trên có nghiệm kép2.Xác định m để mỗi cặp phương trình sau có nghiệm chunga) x2 + mx +2 = 0 và x2 +2x + m = 0b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 03. Cho phương trình (m+1)x2 +4mx +4m - 1 =0a) Giải phương trình với m...
Đọc tiếp

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0

a) Giải phương trình với m = -2

b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1

c) Tìm các giá trị của m để phương trình trên có nghiệm kép

2.Xác định m để mỗi cặp phương trình sau có nghiệm chung

a) x2 + mx +2 = 0 và x2 +2x + m = 0

b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 0

3. Cho phương trình (m+1)x2 +4mx +4m - 1 =0

a) Giải phương trình với m = - 2

b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt

c) Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện x1 = - 2x2

4. Cho phương trình x2 - 2(m+4)x +m2 -8 =0

a) Tìm m để biểu thức A= x12 + x22 - x1 - x2 đạt giá trị nhỏ nhất

b) Tìm m để biểu thức B= x1 + x2 -3x1x2 đạt giá trị lớn nhất

c) Tìm m để biểu thức C= x12 + x22 - x1x2 đạt giá trị lớn nhất

Mong mọi người giúp mình, mình thực sự rất cần. Cảm ơn trước ạ. Làm được bài nào thì cmt ngay giúp mình ạ.

1
18 tháng 2 2021

Bài 1 : a, Thay m = -2 vào phương trình ta được : 

\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)

Ta có : \(\Delta=64-60=4>0\)

Vậy phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)

b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)

\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)

\(1+2\left(m-2\right)+m^2-3m+5=0\)

\(6+2m-4+m^2-3m=0\)

\(2-m+m^2=0\)( giải delta nhé )

\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)

Vậy phương trình vô nghiệm 

c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )