K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2018

Đáp án C.

Dễ thấy  u n = 1 1 . 3 + 1 3 . 5 + . . . + 1 2 n + 1 2 n + 3 = n 2 n + 3 ⇒ l i m   u n = l i m n 2 n + 3 = 1 2 .

AH
Akai Haruma
Giáo viên
28 tháng 3 2021

Lời giải:

$\frac{u_{n-1}}{u_n}=\frac{n^2}{n^2-1}>0$ với mọi $n\geq 2$ nên $u_{n-1}, u_n$ luôn cùng dấu.

Mà $u_1=2017>0$ nên $u_n>0$ với mọi $n=1,2,...$

Mặt khác:

$n^2(u_{n-1}-u_n)=u_{n-1}>0\Rightarrow u_{n-1}>u_n$ nên dãy $(u_n)$ là dãy giảm.

Dãy giảm và bị chặn dưới nên $u_n$ hội tụ. Đặt $\lim u_n=a$. 

Ta có: $a=n^2(a-a)\Rightarrow a=0$

Vậy $\lim u_n=0$

 

4 tháng 12 2018

Đáp án là C

25 tháng 6 2017

5 tháng 11 2017

Chọn A

Phương pháp: Tìm công thức số hạng tổng quát

Cách giải: Ta có:

u ( 1 ) = 1

u ( 2 ) = u ( 1 ) + u ( 1 ) = 2 u ( 1 ) + 1

u ( 3 ) = u ( 2 ) + u ( 1 ) = 3 u ( 1 ) + 1 + 2

u ( 4 ) = u ( 3 ) + u ( 1 ) = 4 u ( 1 ) + 1 + 2 + 3

. . .

u ( 2017 ) = u ( 2016 ) + u ( 1 ) = 2017 u ( 1 ) + 1 + 2 + 3 . . . + 2016

⇒ u ( 2017 ) = 1 + 2 + 3 . . . + 2016 + 2017 = 2035153

AH
Akai Haruma
Giáo viên
27 tháng 3 2021

Yêu cầu đề bài là gì vậy bạn?

24 tháng 4 2017

a) Ta có công thức tính số lượng số hạng là:

(Số cuối- số đầu) : khoảng cách +1

Vậy số lượng số hạng dãy trên là: \(\frac{\left(n-1\right)}{2}+1=2017\)

Suy ra \(n-1=2016\cdot2\)

          \(n=4032+1=4033\)

b) Tổng dãy trên là: \(\frac{\left(4033+1\right)\cdot2017}{2}=\frac{4034\cdot2017}{2}=4068289\)

24 tháng 4 2017

A) Số khoảng cách là 2016

Hiệu số đầu và số cuối là:

2016×2=4032 đơn vị

Số hạng thứ n là: 

1+4032 =4033 

Câu b mình chịu

18 tháng 2 2021

1/ \(\lim\limits\dfrac{\dfrac{2^n}{7^n}-5.7.\left(\dfrac{7}{7}\right)^n}{\dfrac{2^n}{7^n}+\left(\dfrac{7}{7}\right)^n}=-35\)

2/ \(\lim\limits\dfrac{\dfrac{3^n}{7^n}-2.5.\left(\dfrac{5}{7}\right)^n}{\dfrac{2^n}{7^n}+\dfrac{7^n}{7^n}}=0\)

3/ \(\lim\limits\sqrt[3]{\dfrac{\dfrac{5}{n}-\dfrac{8n}{n}}{\dfrac{n}{n}+\dfrac{3}{n}}}=\sqrt[3]{-8}=-2\)