K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2019

Ta có

1 AH 2 = 1 AB 2 + 1 AC 2 ⇒ AH = 24cm tan B = A C A B = 40 30 ⇒ B ^ ≈ 53 0  

Bài 1: 

AH=12cm

AC=20cm

\(\widehat{ABC}=37^0\)

2 tháng 12 2021

a) Áp dụng HTL :

\(\left\{{}\begin{matrix}AH^2=BH.HC\Rightarrow AH=\sqrt{1,8.3,2}=2,4\left(cm\right)\\AB^2=BH.BC\Rightarrow AB=\sqrt{1,8\left(1,8+3,2\right)}=3\left(cm\right)\\AC^2=HC.BC\Rightarrow AC=\sqrt{3,2\left(1,8+3,2\right)}=4\left(cm\right)\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}tanB=\dfrac{AC}{AB}=\dfrac{4}{3}\Rightarrow\widehat{B}\approx53^0\\tanC=\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow\widehat{C}\approx37^0\end{matrix}\right.\)

19 tháng 11 2021
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học trực tuyến OLM

Tham khảo tại đây nha:

https://hoc24.vn/hoi-dap/question/887221.html

10 tháng 8 2021

ảm ơn ạ :3

 

 

15 tháng 8 2023

trời ơi giúp với mình đg cần gấp ạ

 

a: Xét ΔABC vuông tại A có

AB^2+AC^2=BC^2

=>AC^2=BC^2-AB^2=144

=>AC=12cm

Xét ΔABC vuông tại A có AH là đường cao

nên AH*BC=AB*AC

=>AH*13=5*12=60

=>AH=60/13(cm)

Xét ΔABC vuông tại A có

sin ABC=AC/BC=12/13

nên \(\widehat{ABC}\simeq67^023'\)

AH
Akai Haruma
Giáo viên
15 tháng 6 2021

Lời giải:

a) 

Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{30^2+40^2}=50$ (cm)

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{30.40}{50}=24$ (cm)

$BH=\sqrt{AB^2-AH^2}=\sqrt{30^2-24^2}=18$ (cm)

b) 

Theo tính chất tia phân giác:

$\frac{AD}{DC}=\frac{AB}{BC}=\frac{30}{50}=\frac{3}{5}$

$\Rightarrow \frac{AD}{AC}=\frac{3}{8}$

$\Leftrightarrow \frac{AD}{40}=\frac{3}{8}$

$\Rightarrow AD=15$ (cm)

$DC=AC-AD=40-15=25$ (cm)

 

AH
Akai Haruma
Giáo viên
15 tháng 6 2021

Hình vẽ: