Cho lăng trụ đứng ABC.A’B’C’. Gọi M là trung điểm của A’C’, I là giao điểm của AM và A’C’. Khi đó tỉ số thể tích của khối tứ diện IABC và khối lăng trụ đã cho là?
A. 2 3
B. 2 9
C. 4 9
D. 1 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Xét ∆ A A ' C có I là trọng tâm, d ( I , ( A B C ) ) = 2 3 d ( M , ( A B C ) )
Ta có: V A B C . A ' B ' C ' = S A B C . A A ' = S A B C . d A ' ; A B C
V I A B C = 1 3 S ∆ A B C . d I , ( A B C ) = 1 3 S ∆ A B C . 2 3 d ( M , ( A B C ) ) = 2 9 S ∆ A B C . d ( A ' , ( A B C ) )
Đáp án D.
Phương pháp : Dựng thiết diện, xác định hai phần cần tính thể tích.
Sử dụng phân chia và lắp ghép các khối đa diện.
Cách giải : Gọi E = MN ∩ B'C'
Kéo dài MP cắt AB tại D, cắt AA ‘ tại F.
Nối NF, cắt AC tại G.
Do đó thiết diện của lăng trụ khi cắt bởi mặt phẳng (MNP) là NEPDG.
Gọi V1 là thể tích khối đa diện chứa đỉnh A’ ta có :
Ta có:
=> D là trung điểm của AB
Dễ dàng chứng minh được ∆ADG đồng dạng ∆A’MN theo tỉ số 1 3
Áp dụng định lí Menelaus trong tam giác A’B’C’ ta có:
Áp dụng định lí Menelaus trong tam giác A’MN ta có:
Vậy
=> V 1 V 2 = 49 95
Đáp án B.
Ta có B P ⊥ A C B P ⊥ A ' A ⇒ B P ⊥ A ' A C ⇒ B P ⊥ M N P
Ta có M N = 1 2 A C = a ; N P = 1 2 A ' A = 3 a 2
⇒ S M N P = 1 2 M N . N P = 3 a 2 4
Ta có B P = 2 a 3 2 = a 3
V B . M N P = 1 3 B P . S M N P = 1 3 . a 3 . 3 a 2 4 = a 3 3 4 .
Đáp án B
Ta có V I . A B C V A B C . A ' B ' C ' = 1 3 d ( I , A B C ) ) . S A B C A ' A . S A B C
Mà A ' I I C = A ' M A C = 1 2 ⇒ I C A ' C = 2 3
⇒ d ( I , ( A B C ) ) A ' A = 2 3
⇒ V I . A B C V A B C . A ' B ' C ' = 2 9