OLM cung cấp gói bải giảng điện tử PPT cho giáo viên đầu năm học
Thi thử và xem hướng dẫn giải chi tiết đề tham khảo 12 môn thi Tốt nghiệp THPT 2025
Tham gia cuộc thi "Nhà giáo sáng tạo" ẫm giải thưởng với tổng giá trị lên đến 10 triệu VNĐ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho hàm số y=f(x) liên tục trên ℝ và có đồ thị như hình vẽ bên. Số nghiệm thực của phương trình
5f(x) +4 = 0
A. 4
B. 3
C. 2
D. 0
Đáp án A
(1) là phương trình hoành độ giao điểm của (C) và đường thẳng ( d ) : y = - 4 5
Suy ra: Số nghiệm của phương trình (1) là số giao điểm của đồ thị (C) và đường thẳng (d)
Cho hàm số y=f(x) liên tục trên ℝ và có đồ thị như hình vẽ bên. Số nghiệm thực phân biệt của phương trình f(f(x)) =0 bằng
A. 7
C. 5
D. 9
Đáp án D
Cho hàm số y=f(x) liên tục trên ℝ và có đồ thị như hình vẽ bên. Số nghiệm thực của phương trình 2 f ( x 2 - 1 ) - 5 = 0 là:
A. 3
B. 2
C. 6
D. 4
Đáp án B
Vậy số nghiệm thực của phương trình (1) là 2
Cho hàm số f(x) liên tục trên ℝ và có đồ thị như hình vẽ bên.
Số nghiệm của phương trình 4f(x) + 3 = 0 là:
A. 0
C. 3
Cho hàm số y=f(x) liên tục trên ℝ ,f(2)=3 và có đồ thị như hình vẽ bên
Có bao nhiêu số nguyên m ∈ - 20 ; 20 để phương trình có 4 nghiệm thực phân biệt. f ( x + m ) = 3
A. 2
B. 18
C. 4
D. 19
Cho hàm số y=f(x) liên tục trên ℝ có đồ thị như hình vẽ bên. Phương trình f(f(x)-1 =0 có tất cả bao nhiêu nghiệm thực phân biệt?
A. 6
B. 5
C. 7
Cho hàm số y = f (x) liên tục trên ℝ và có đồ thị như hình vẽ bên.
Tập hợp tất cả các giá trị thực của tham số m để phương trình f (sinx) = m có nghiệm thuộc khoảng (0; π ) là
A. [-1;3)
B. (-1;1)
C. (-1;3)
D. [-1;1 )
Đáp án là D
Cho hàm số y=f(x) liên tục trên ℝ có đồ thị như hình vẽ bên dưới.
Có bao nhiêu số nguyên m để phương trình
f(f(x) - m) = 0 có tất cả 9 nghiệm thực phân biệt?
A. 1
B. 0
D. 2
Cho hàm số y = f(x) liên tục trên ℝ và có đồ thị như hình vẽ bên.
Tập hợp nghiệm của phương trình f f x + 1 = 0 có bao nhiêu phần tử?
B. 6
C. 9
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ bên. Số nghiệm thực phân biệt của phương trình f(f(x))=0 bằng
Vậy phương trình đã cho có tất cả 9 nghiệm.
Chọn đáp án D.
Đáp án A
(1) là phương trình hoành độ giao điểm của (C) và đường thẳng ( d ) : y = - 4 5
Suy ra: Số nghiệm của phương trình (1) là số giao điểm của đồ thị (C) và đường thẳng (d)