K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x+y=3\) nên \(x=3-y\)

\(x^2+3y^2+2y+5\)

\(=\left(3-y\right)^2+3y^2+2y+5\)

\(=4y^2-4y+14\)

\(=\left(2y-1\right)^2+13\ge13\)

Dấu ''='' xảy ra khi \(y=\frac{1}{2}\)

2 tháng 8 2019

23 tháng 10 2019

Đáp án D

19 tháng 3 2021

Toán lớp 0 ?????  \(\text{ 🤔 }\text{ 🤔 }\text{ 🤔 }\text{ 😅 }\text{ 😅 }\text{ 😅 }\)

31 tháng 8 2018

bài 4 : ta có : \(x+2y=3\Leftrightarrow x=3-2y\)

\(\Rightarrow E=x^2+2y^2=\left(3-2y\right)^2+2y^2=4y^2-12y+9+2y^2\)

\(=6y^2-12y+6+3=6\left(y-1\right)^2+3\ge3\)

\(\Rightarrow E_{max}=3\) khi \(x=y=1\)

bài 5 : ta có : \(x^2+3y^2+2xy-10x-14y+18=0\)

\(\Leftrightarrow2y^2-4y+2=-\left(x^2+2xy+y^2\right)+10\left(x+y\right)-16\)

\(\Leftrightarrow2\left(y-1\right)^2=-\left(x+y\right)^2+10\left(x+y\right)-16\ge0\)

\(\Leftrightarrow2\le x+y\le8\)

\(\Rightarrow P_{min}=2\) khi \(\left\{{}\begin{matrix}y=1\\x+y=2\end{matrix}\right.\Leftrightarrow x=y=1\)

\(\Rightarrow P_{max}=8\) khi \(\left\{{}\begin{matrix}y=1\\x+y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)

vậy ...........................................................................................................................

3x^2+3y^2+4xy-2x+2y+2=0

=>2x^2+4xy+2y^2+x^2-2x+1+y^2+2y+1=0

=>x=1 và y=-1

M=(1-1)^2017+(1-2)^2018+(-1+1)^2015=1

24 tháng 5 2019

Đáp án là C

15 tháng 4 2019

22 tháng 7 2021

A = x^2 + 5y^2 + 4xy - 2y - 3 

= x^2 + 4xy + 4y^2 + y^2 - 2y + 1 - 4

= ( x + 2y )^2 + ( y - 1 )^2 - 4 >= -4 

Dấu ''='' xảy ra khi y = 1 ; x = -2 

Vậy GTNN A là -4 khi x = -2 ; y = 1

2 tháng 1 2020

NV
2 tháng 9 2021

\(P-\dfrac{5}{2}=x+2y-\dfrac{x^2+y^2}{2}=-\dfrac{1}{2}\left(x-1\right)^2-\dfrac{1}{2}\left(y-2\right)^2+\dfrac{5}{2}\le\dfrac{5}{2}\)

\(\Rightarrow P-\dfrac{5}{2}\le\dfrac{5}{2}\Rightarrow P\le5\)

\(P_{max}=5\) khi \(\left(x;y\right)=\left(1;2\right)\)

3 tháng 9 2021

Cảm ơn nhiều ạ !

20 tháng 7 2018

Ta có:

\(C=2x^2+3y^2+4xy-8x-2y+18\)

\(C=2\left(x^2+2xy+y^2\right)+y^2-8x-2y+18\)

\(C=2[\left(x+y\right)^2-4\left(x+y\right)+4]+\left(y^2+6y+9\right)+1\)

\(C=2\left(x+y-2\right)^2+\left(y+3\right)^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow x+y=2\)và \(y=-3\)

Hay x = 5 , y = -3