Từ các chữ số 0, 1, 2, 3, 4, 5 ta lập được bao nhiêu số có 3 chữ số đôi một khác nhau chia hết cho 5?
A. 12
B. 24
C. 36
D. 48
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A. 18
Vì:
Số lẻ chia hết cho 5 thì có tận cùng là 5
Chữ số hàng nghìn có 3 lượt chọn
Chữ số hàng trăm có 3 lượt chọn
Chữ số hàng chục có 2 lượt chọn
Chữ số hàng đơn vị có 1 lượt chọn
Vậy có số các số là :
3 x 3 x 2 x 1 = 18 (số)
Đáp số : 18 số
Trường hợp 1. Số đó có dạng a 1 a 2 0 chọn a 1 a 2 có A 5 2 cách nên có A 5 2 số thỏa mãn.
Trường hợp 2. Số đó có dạng a 1 a 2 5 chọn a 1 có 4 cách, chọn a 2 có 4 cách nên có 4.4 số thỏa mãn.
Do đó có A 5 2 + 4 . 4 = 36 số thỏa mãn.
Đáp án cần chọn là C
Đáp án B
Số cần lập có dạng a b c d ¯
trong đó a ; b ; c ; d ∈ 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6
trong đó d = 0 ; 5
TH1: d = 0 khi đó a,b,c có A 6 3 cách chọn và sắp xếp.
TH2: d = 0 khi đó a,b,c có 5.5.4 ( a # 0 ) cách chọn và sắp xếp
Theo quy tắc cộng có
A 6 3 + 5 . 5 . 4 = 220 số thỏa mãn yêu cầu bài toán
Đáp án B.
Số cần lập có dạng a b c d ¯ trong đó a ; b ; c ; d ∈ 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; trong đó d = {0;5}.
TH1: d = 0 khi đó a,b,c có A 6 3 cách chọn và sắp xếp.
TH2: d = 5 khi đó a,b,c có 5.5.4 a ≠ 0 cách chọn và sắp xếp.
Theo quy tắc cộng có A 6 3 + 5 . 5 . 4 = 220 số thỏa mãn yêu cầu bài toán.
a: \(\overline{abcd}\)
a có 7 cách chọn
b có 6 cách
c có 5 cách
d có 4 cách
=>Có 7*6*5*4=840 cách
b: Bộ ba chia hết cho 9 sẽ có thể là (1;2;6); (1;3;5); (2;3;4)
Mỗi bộ có 3!=6(cách)
=>Có 6*3=18 cách
c: \(\overline{abcde}\)
e có 3 cách
a có 6 cách
b có 5 cách
c có 4 cách
d có 3 cách
=>Có 3*6*5*4*3=1080 cách
a. Gọi số đó là \(\overline{ab}\)
a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a)
Theo quy tắc nhân ta có: \(5.5=25\) số
b. Gọi số đó là \(\overline{abc}\)
a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a), c có 4 cách chọn (khác a và b)
Có: \(5.5.4=100\) số
c. Gọi số đó là \(\overline{abcd}\)
Do số chẵn nên d chẵn
- TH1: \(d=0\) (1 cách chọn d)
a có 5 cách chọn (khác d), b có 4 cách chọn (khác a và d), c có 3 cách chọn
\(\Rightarrow1.5.4.3=60\) số
- TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (2 và 4)
a có 4 cách chọn (khác 0 và d), b có 4 cách chọn (khác a và d), c có 3 cách chọn
\(\Rightarrow2.4.4.3=96\) số
Theo quy tắc cộng, có: \(60+96=156\) số thỏa mãn
d.
Gọi số đó là \(\overline{abcde}\)
Số lẻ nên e lẻ \(\Rightarrow\) e có 3 cách chọn (1;3;5)
a có 4 cách chọn (khác 0 và e), b có 4 cách chọn (khác a và e), c có 3 cách, d có 2 cách
\(\Rightarrow3.4.4.3.2=288\) số
\(\overline{abcde}\)
TH1: e=0
e có 1 cách chọn
Chữ số 2 có 4 cách chọn
ba chỗ còn lại có 4*3*2=24 cách
=>Có 4*24=96 cách
TH2: e=5; a=2
a,e có 1 cach
b có 4 cách
c có 3 cách
dcó 2 cách
=>Có 4*3*2=24 cách
TH3: e=5; a<>2
e có 1 cách chọn
a có 3 cách chon
số 2 có 3 cách
hai số còn lại có 3*2=6 cách
=>Có 3*3*6=54 cách
=>CÓ 96+24+54=174 số
Đáp án C
Trường hợp 1. Số đó có dạng a 1 a 2 0 ¯ chọn a 1 a 2 ¯ có A 5 2 cách nên có A 5 2 số thỏa mãn.
Trường hợp 2. Số đó có dạng a 1 a 2 5 ¯ chọn a 1 có 4 cách, chọn a 2 có 4 cách nên có 4.4 số thỏa mãn
Do đó có A 5 2 + 4 . 4 = 36 số thỏa mãn