Cho tứ diện S.ABC trên đoạn thẳng SA, SB, SC lần lượt lấy các điểm M, N, P sao cho SM=5MA SN=2NB và SP=kPC Kí hiệu V T là thể tích của khối đa diện T. Biết rằng Tìm k?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B.
Chọn M A = 1 ⇒ S M = 5 S A = 6 , N B = 1 ⇒ S N = 2 S B = 3 , P C = 1 ⇒ S N = k S C = k + 1 .
Ta có V S M N P = 1 2 V S A B C ⇔ V S . M N P V S . A B C = S M S A . S N S B . S P S C = 5 6 . 2 3 . k k + 1 = 1 2 ⇒ k k + 1 = 9 10 ⇒ k = 9 .
Chọn D.
Mp ( α ) qua MN và song song với SC. Mp ( α ) cắt BC và cắt AC tại P và Q ta có:
NP // SC nên Ta có: MN, PQ, AB đồng quy tại E.
Áp dụng định lí Mennelauyt trong tam giác SAB, ta có:
Áp dụng định lí Menelauyt trong tam giác ABC ta có:
Vậy
Đáp án A
Gọi H là hình chiếu của S lên mặt đáy A B C suy ra S H ⊥ A B C thì H là trung điểm của AC.
Ta có:
S H = 9 − 2 = 7 ; K = P Q ∩ A B ; A B = A C = 2
Dựng P E / / A B ta có:
K B P E = Q B Q E = 1 ⇒ K B = P E = 1 3 A B = 2 3
S M N K = 1 2 d K ; M N . M N = 1 2 N B . M N = 1 2 d P ; A B C = 2 3 . S H = 2 3 7 ⇒ V P . M N K = 1 3 d P ; A B C . S M N K = 7 9
Lại có:
K Q K P = 1 2 ⇒ V Q . M N P V K . M N P = 1 2 ⇒ V Q . M N P = 1 2 V K . M N P = 7 18
Đáp án là B
Theo công thức tỉ số thể tích của hình chóp tam giác ta có
Đáp án C
Ta có ∆ A B C vuông cân tại B nên M là tâm đường tròn ngoại tiếp. S M = S B = S C ⇒ S M ⊥ ( A B C )
F E ∩ A B = K , kẻ F G / / B A F H / / S M ⇒ F H ⊥ ( A B C ) ta có: F H = 2 3 S M = 2 3 S A 2 - A M 2 = 2 3 12 2 - 8 = 4 3 34
d t K M N = d t B N M K - d t B N K = 1 2 ( M N + B K ) . B N - 1 2 M N . B N = 1 2 . 2 . 2 = 2
∆ F G E = ∆ K A E ( C . G . C ) ⇒ F E = 1 2 F K
V F M N E V F M N K = F E F K = 1 2 ⇒ V F M N E = 1 2 V F M N K = 1 2 . 1 3 . F H . d t K M N = 1 6 . 4 3 34 . 2 = 4 34 9