K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2019

Đáp án A

Phương pháp:

- Coi hai ông Trum và Kim là một người thì bài toán trở thành xếp 9 người vào dãy ghế.

- Lại có 2 cách đổi chỗ hai ông Trum và Kim nên từ đó suy ra đáp số.

Cách giải:

Kí hiệu 10 vị nguyên thủ là a, b, c, d, e, f, g, h, i, k.

Và hai ông Trum, Kim lần lượt là a, b.

Nếu ông Trum ngồi lên bên trái ông Kim, tương đương xếp  a b , c, d, e, f , g, h ,i ,k vào 9 vị trí. Ta có  A 9 9 cách.

Vậy tổng hợp lại, có  A 9 9 + A 9 9 = 2 . 9 ! cách.

1 tháng 2 2018

Đáp án A

Phương pháp:

- Coi hai ông Trum và Kim là một người thì bài toán trở thành xếp 9 người vào dãy ghế.

- Lại có 2 cách đổi chỗ hai ông Trum và Kim nên từ đó suy ra đáp số.

Cách giải:

Kí hiệu 10 vị nguyên thủ là a, b, c, d, e, f, g, h, i, k.

Và hai ông Trum, Kim lần lượt là a, b.

Nếu ông Trum ngồi lên bên trái ông Kim, tương đương xếp a b ¯ , c , d , e , f , g , h , i , k vào 9 vị trí. Ta có A 9 9 cách.

Vậy tổng hợp lại, có A 9 9 + A 9 9 = 2.9 ! cách.

5 tháng 12 2019

Chọn D

DD
25 tháng 12 2022

- Đếm số cách để A và B ngồi cạnh nhau, C ngồi vị trí bất kì: 

Coi A, B là một người, có \(2!\) cách xếp vị trí A, B. 

Khi đó ta xếp vị trí của 9 người: \(9!\).

Có tổng số cách xếp là: \(2!.9!\).

- Đếm số cách để A và B ngồi cạnh nhau, C ngồi cạnh A. 

Coi A, B, C là một người. Có 2 cách xếp thỏa mãn là CAB, BAC. 

Khi đó ta xếp vị trí của \(8\) người: \(8!\).

Có số cách xếp là: \(2.8!\)

Vậy số cách xếp để A và B ngồi cạnh nhau, A và C không ngồi cạnh nhau là \(2!.9!-2.8!\).

Câu 1: Có bao nhiêu cách sắp xếp 5 người khách gồm 3 nam và 2 nữ ngồi vào một hàng 5 ghế nếu:  a. Họ ngồi chỗ nào cũng được?  b. Nam ngồi kề nhau, nữ ngồi kề nhau?  c. Nam và nữ ngồi xen kẻ nhau?  d. Có 2 người luôn ngồi cạch nhau?Câu 2: Có bao nhiều cách sắp xếp chỗ ngồi cho 5 người khách: a.  Vào 5 ghế xếp thành một dãy sao cho vị khách A luôn ngồi chính giữa b. Vào 5 ghế chung quanh một...
Đọc tiếp

Câu 1: Có bao nhiêu cách sắp xếp 5 người khách gồm 3 nam và 2 nữ ngồi vào một hàng 5 ghế nếu:

  a. Họ ngồi chỗ nào cũng được?
  b. Nam ngồi kề nhau, nữ ngồi kề nhau?
  c. Nam và nữ ngồi xen kẻ nhau?
  d. Có 2 người luôn ngồi cạch nhau?
Câu 2: Có bao nhiều cách sắp xếp chỗ ngồi cho 5 người khách:
 a.  Vào 5 ghế xếp thành một dãy sao cho vị khách A luôn ngồi chính giữa
 b. Vào 5 ghế chung quanh một bàn tròm, nếu không có sự phân biệt giữa các ghế này 
Câu 3: Có bao nhiêu cách sắp xếp chỗ ngồi 6 người ngồi vào một dãy 6 ghế hàng ngang nếu:
a. Có 3 người trong số đó muốn ngồi kề nhau
b. Có 2 người trong số đó không muốn ngồi kề nhau
Câu 4: Từ 5 bông vang, 3 bông trắng và 4 bông đỏ( các bông hoa xem như đôi một khác nhau ), ta chọn ra một bó gồm 7 bông:
a. Có bao nhiêu cách chọn ra bó hoa trong đó có đúng một bông đỏ
b. Có bao nhiêu cách chọn ra bó hoa trong đó có ít nhất 3 bông đỏ
c. Có bao nhiêu cách chọn ra bó hoa trong đó có mỗi màu có ít nhất 2 bông

0
18 tháng 5 2017

Tổ hợp - xác suất

22 tháng 9 2021

cop bên vietjack à

 

10 tháng 12 2018

a) Có 2. 9 = 18 cách xếp chỗ cho An và Bình ngồi cạnh nhau.

8 bạn kia được xếp vào 8 chỗ còn lại. Vậy có 8! cách xếp 8 bạn còn lại và do đó có 18! 8 cách xếp sao cho An, Bình ngồi cạnh nhau.

b) Có 10! cách xếp chỗ ngồi cho 10 bạn.

Từ đó có 10! - 18. 8! = 72. 8! cách xếp chỗ cho 10 bạn mà An và Bình không ngồi cạnh nhau.

5 tháng 7 2017

a) Xếp hai người đàn bà ngồi cạnh nhau.Có 2 cách.

Sau đó xếp đứa trẻ ngồi vào giữa. Có 1 cách.

Xếp 4 người đàn ông vào 4 ghế còn lại. Có 4! cách.

Theo quy tắc nhân, có 2. 4! = 48 cách.

b) Đầu tiên chọn 2 người đàn ông. Có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách.

Xếp hai người đó ngồi cạnh nhau. Có 2 cách.

Sau đó xếp đứa trẻ vào giữa. Có 1 cách.

Xếp 4 người còn lại vào 4 ghế còn lại. Có 4! cách.

Vậy theo quy tắc nhân, có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách.