Tung đồng thời 2 con súc sắc cân đối đồng chất. Gọi m là tích của số chấm trên hai con súc sắc trong mỗi lần tung. Tính xác suất để phương trình 1 2 x 2 + 6 x + m = 0 có hai nghiệm phân biệt.
A . 28 36
B . 24 36
C . 17 36
D . 26 36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Phương pháp:
+) Tính số phần tử của không gian mẫu.
+) Gọi A là biến cố: "Hiệu số chấm xuất hiện trên các mặt của hai con súc sắc bằng 2". Tìm đẩy đủ các bộ số có hiệu bằng 2.
+) Tính xác suất của biến cố A.
Cách giải:
Gọi A là biến cố: "Hiệu số chấm xuất hiện trên các mặt của hai con súc sắc bằng 2".
Các bộ số có hiệu bằng 2 là (1;3); (2;4); (3;5); (4;6)
Không gian mẫu: n Ω = 6 . 6 = 36
Gọi A là biến cố: ‘‘Tổng số chấm xuất hiện hai lần tung là một số nhỏ hơn 10’’.
⇒ A ¯ : ‘‘Tổng số chấm xuất hiện hai lần tung là một số không nhỏ hơn 10’’.
Tổng số chấm là một số không nhỏ hơn 10 nên số chấm xuất hiện là các cặp:
Chọn B.
Đáp án A
Phương pháp giải:
Tìm không gian mẫu khi gieo súc sắc và áp dụng quy tắc đếm tìm biến cố
Lời giải:
Tung 1 con súc sắc hai lần liên tiếp => Số phần tử của không gian mẫu là
Gọi x, y lần lượt là số chấm xuất hiện khi tung con súc sắc trong 2 lần liên tiếp.
Theo bài ra, ta có
=>(x;y) = {(1;2), (2;3), (4;5). (5;6)}
Do đó, số kết quả thuận lợi cho biến cố là n = 5. Vậy
Đáp án A
Phương pháp giải:
Tìm không gian mẫu khi gieo súc sắc và áp dụng quy tắc đếm tìm biến cố
Lời giải:
Tung 1 con súc sắc hai lần liên tiếp => Số phần tử của không gian mẫu là n ( Ω ) = 6 . 6 = 36
Gọi x, y lần lượt là số chấm xuất hiện khi tung con súc sắc trong 2 lần liên tiếp.
Theo bài ra, ta có
Do đó, số kết quả thuận lợi cho biến cố là n = 5.
Vậy P = n ( X ) n ( Ω ) = 5 36
Chọn B
Số phần tử của không gian mẫu:
Gọi A là biến cố thỏa mãn yêu cầu bài toán:
nên n(A) = 8
Vậy
Số phần tử của không gian mẫu là: n Ω = 6 2 = 36
Gọi A: “tổng số chấm trên mặt xuất hiện của hai con súc sắc đó không vượt quá 5”
Chọn: C
Đáp án C
Có 6 khả năng xảy ra khi tung súc sắc nên số phần tử của không gian mẫu là n ( Ω ) = 6 .
Gọi A là biến cố: Phương trình x 2 + b x + 2 = 0 (1) có hai nghiệm phân biệt.
Phương trình (1) có hai nghiệm phân biệt ⇔ b 2 − 8 > 0 ⇔ b ∈ 3 ; 4 ; 5 ; 6 ⇒ n A = 4 .
Vậy xác suất cần tính là p A = 2 3 .
Chọn D
Ta có số phần tử của không gian mẫu là n ( Ω ) = 36
Phương trình 1 2 x 2 + 6 x + m = 0 có hai nghiệm phân biệt khi và chỉ khi
Khi đó số chấm trên hai con con súc sắc là cặp số (i;j) với i,j = 1 , 6 ¯ thỏa mãn
Như thế, có tất cả 12 + 5 + 4 + 3 +2 = 26 cặp số (i;j) để i.j = m < 18
Vậy xác suất cần tìm bằng 26 36