Hình bên là đồ thị của hàm số y = x 3 - 3 x . Tìm tất cả các giá trị thực của tham số m để phương trình 64 x 3 = x 2 + 1 2 12 x + m x 2 + 1 có nghiệm.
A. - 2 ≤ m ≤ 2
B. Với mọi m
C. m ≥ 0
D. m ≥ - 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
(*)
Đặt
Yêu cầu bài toán trở thành: Tìm m để phương trình có nghiệm
Từ đồ thị đã cho, ta suy ra đồ thị của hàm số
Từ đó ta có kể quả thỏa mãn yêu cầu bài toán
Đáp án D
Từ đồ thị hàm số đã cho (như hình vẽ) ta suy ra đồ thị của hàm số
Từ đó ta có kết quả thỏa mãn yêu cầu bài toán
:
Chọn D.
Để phương trình f(x)=m+2 có 4 nghiệm phân biệt thì đường thẳng y=m+2 phải cắt đồ thị hàm số y=f(x) tại 4 điểm phân biệt.
Dựa vào đồ thị ta được -4<m+2<-3 => -6<m<-5
Đáp án D
Từ đồ thị đã cho ta suy ra đồ thị hàm số
Từ đó ta có kết quả thỏa mãn yêu cầu bài toán là
Đáp án A
Dựa vào đồ thị hàm số y = f x , để phương trình f x = m có 2 nghiệm phân biệt ⇔ m > 5 0 < m < 1
+ Trước tiên từ đồ thị hàm số y= f( x) , ta suy ra đồ thị hàm số y = |f(x)| như hình dưới đây:
Phương trình 2|f(x)| - m = 0 hay |f(x)| = m/2 là phương trình hoành độ giao điểm của đồ thị hàm số y = |f(x) và đường thẳng y= m/2.
Dựa vào đồ thị hàm số y = |f(x)|, ta có ycbt trở thành:
Chọn A.
Chọn A