K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2023

1. (Mình đưa nó về thừa số nguyên tố nha, cái nào ko đc thì thôi)

125 = 53; 27 = 33; 64 = 26; 1296 = 64; 1024 = 210; 2401 = 74; 43 = 64; 8 = 23; 25.125 = 3125 = 55.

2.

2n = 16 =) n = 4.           3n = 81 =) n = 4.      2n-1 = 64 =) n = 7.        3n+2 = 27.81 =) n = 5.       25.5n-1 = 625 =) n = 3.

2n.8 = 128 =) n = 4.     3.5n = 375 =) n = 3.   (3n)2 = 729 =) n = 3.        81 ≤ 3n ≤ 729 =) n = 4; 5; 6.

 

9 tháng 8 2023

\(125=5^3;27=3^3;1296=36^2=6^4=2^4.3^4;1024=32^2=2^{10};2401=49^2=7^4;4^3=2^6;8=2^3;25.125=5^2.5^3=5^5\)

AH
Akai Haruma
Giáo viên
30 tháng 6 2021

Lời giải:

Gọi $d$ là ƯCLN của $-3n+1$ và $3n$

Ta có:

$-3n+1\vdots d$

$3n\vdots d$

$\Rightarrow -3n+1+3n\vdots d$

$1\vdots d$

$\Rightarrow d=1$

Vậy $-3n+1, 3n$ nguyên tố cùng nhau nên phân số $\frac{-3n+1}{3n}$ tối giản.

------------------

Gọi $k$ là ƯCLN của $-n+4$ và $3n-11$

Ta có:

$-n+4\vdots d$

$\Rightarrow -3n+12\vdots d$

$3n-11\vdots d$

$\Rightarrow (-3n+12)+(3n-11)\vdots d$

$1\vdots d$

$\Rightarrow d=1$

$\Rightarrow \frac{-n+4}{3n-11}$ là phân số tối giản (đpcm)

Giải:

\(\dfrac{-3n+1}{3n}\) 

Gọi \(ƯCLN\left(-3n+1;3n\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}-3n+1⋮d\\3n⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(-3n+1\right)+\left(3n\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{-3n+1}{3n}\) là p/s tối giản

 

\(\dfrac{-n+4}{3n-11}\) 

Gọi \(ƯCLN\left(-n+4;3n-11\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}-n+4⋮d\\3n-11⋮d\end{matrix}\right.\)   \(\Rightarrow\left[{}\begin{matrix}3.\left(-n+4\right)⋮d\\3n-11⋮d\end{matrix}\right.\)   \(\Rightarrow\left[{}\begin{matrix}-3n+12⋮d\\3n-11⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(-3n+12\right)+\left(3n-11\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{-n+4}{3n-11}\) là p/s tối giản

Chú bạn học tốt!

30 tháng 9 2017

\(8^{2n}:4^{3n}\)

\(=\left(2^3\right)^{2n}:\left(2^2\right)^{3n}\)

\(=2^{6n}:2^{6n}\)

\(=2^{6n-6n}\)

30 tháng 9 2017

82n:43n

= (23)2n:(22)3n

= 23.2n : 22.3n

= 26n : 26n

= 26n-6n

= 20 = 1

12 tháng 2 2022

\(a,lim\dfrac{2n^2+1}{3n^3-3n+3}\)

\(=lim\dfrac{\dfrac{2}{n}+\dfrac{1}{n^3}}{3-\dfrac{3}{n^2}+\dfrac{3}{n^3}}=0\)

NV
12 tháng 2 2022

\(\lim\dfrac{-3n^3+1}{2n+5}=\lim\dfrac{-3n^2+\dfrac{1}{n}}{2+\dfrac{5}{n}}=\dfrac{-\infty}{2}=-\infty\)

\(\lim\dfrac{n^3-2n+1}{-3n-4}=\lim\dfrac{n^2-2+\dfrac{1}{n}}{-3-\dfrac{4}{n}}=\dfrac{+\infty}{-3}=-\infty\)

11 tháng 2 2022

\(a,lim\dfrac{-3n^3+1}{2n+5}\)

\(=lim\dfrac{-3+\dfrac{1}{n^3}}{2n^2+\dfrac{5}{n^3}}=\dfrac{-3}{2n^2}=\dfrac{1}{n^2}\times\dfrac{-3}{2}=\)-∞

NV
12 tháng 2 2022

\(\lim\dfrac{n^3-2n+1}{-3n-4}=\lim\dfrac{n^2-2+\dfrac{1}{n}}{-3-\dfrac{4}{n}}=\dfrac{+\infty}{-3}=-\infty\)

DT
19 tháng 8 2023

\(\dfrac{3n+1}{3n-4}\left(n\in Z\right)\\ =\dfrac{3n-4+5}{3n-4}=1+\dfrac{5}{3n-4}\)

Để biểu thức đạt gt nguyên thì : \(\dfrac{5}{3n-4}\in Z\)

\(=>3n-4\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\\ =>3n\in\left\{5;3;9;-1\right\}\\ =>n\in\left\{\dfrac{5}{3};1;3;-\dfrac{1}{3}\right\}\)

Do n nguyên -> Kết luận : \(n\in\left\{1;3\right\}\)

19 tháng 8 2023

\(\dfrac{3n+1}{3n-4}\) \(=\dfrac{3n-4+5}{3n-4}\) \(=1+\dfrac{5}{3n-4}\)
Để biểu thức nhận giá trị nguyên thì \(5⋮\left(3n-4\right)\)
\(\Rightarrow\left(3n-4\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
 

\(3n-4\) \(-5\) \(-1\) \(1\) \(5\)
\(n\) \(-\dfrac{1}{3}\) \(1\) \(\dfrac{5}{3}\) \(3\)

Vậy \(x=1\) hoặc \(x=3\) thì biểu thức \(\dfrac{3n+1}{3n-4}\) nhận giá trị nguyên

tham khảo:

 

\(a) 2+5+8+...+(3n−1)=n(3n+1)2 (1) Đặt Sn=2+5+8+...+(3n−1) Với n=1 ta có: S1=2=1(3.1+1)2 Giả sử (1) đúng với n=k(k≥1), tức là Sk=2+5+8+...+(3k−1)=k(3k+1)2 Ta chứng minh (1) đúng với n=k+1 hay Sk+1=(k+1)(3k+4)2 Thật vậy ta có: Sk+1=2+5+8+...+(3k−1)+[3(k+1)−1]=Sk+3k+2=k(3k+1)2+3k+2=3k2+k+6k+42=3k2+7k+42=(k+1)(3k+4)2 Vậy (1) đúng với mọi k≥1 hay (1) đúng với mọi n∈N∗ b) 3+9+27+...+3n=12(3n+1−3) (2) Đặt Sn=3+9+27+...+3n=12(3n+1−3) Với n=1, ta có: S1=3=12(32−3) (hệ thức đúng) Giả sử (2) đúng với n=k(k≥1) tức là Sk=3+9+27+...+3k=12(3k+1−3) Ta chứng minh (2) đúng với n=k+1, tức là chứng minh Sk+1=12(3k+2−3) Thật vậy, ta có: Sk+1=3+9+27+...+3k+1=Sk+3k+1=12(3k+1−3)+3k+1=32.3k+1−32=12(3k+2−3)(đpcm) Vậy (2) đúng với mọi k≥1 hay đúng với mọi n∈N∗\)