Giúp :Cho 3 số dương 0<a<(h)=b<(h)=c: CNR a/(bc+1) + b/(ac+1)+a/(ab+1) <2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu b=0; a>b => a>0 => a nguyên dương
Nếu b>0; a>0 => a>0 => a nguyên dương
Vậy nếu b=0 hoặc b nguyên dương thì a nguyên dương
TH1: a là dương; b là số âm; c là 0
Ta có: \(a^2>0\)
\(\Rightarrow b^5-b^4c=b^5-b^4.0=b^5-0=b^5>0\)
\(\Rightarrow a^2=b^5\) (vô lí)
TH2: a là 1 số âm, b là số dương, c là số 0
Ta có: \(a^2>0\)
\(\Rightarrow b^5-b^4c=b^5>0\)
\(\Rightarrow a^2=b^5\) (thỏa mãn)
Vậy trong 3 số a là số âm, b là số dương, c là số 0
Từ a+b+c=0 => b+c=-a
Theo đề ra ta có a3 + b3 + c3 = 0
=> a3 + (b+c)(b2 - bc + c2 )=0
<=> a3- a[(b + c )2 -3bc]= 0
<=> a3- [( -a )2 - 3bc] = 0
<=> a3 - a3 +3bc = 0
<=> 3bc= 0
<=> a =0 hoặc b=0 hoặc c=0 ( đpcm)
cho mik điểm nha bạn ơiii
1) ta có 1 = -1.(-1-0)
=> a là số nguyên dương vì = 1
=> b là số nguyên âm vì = -1
=> c là số không vì = 0