Một hộp đựng 15 viên bị khác nhau gồm 4 bi đỏ, 5 bi trắng và 6 bi vàng. Tính số cách chọn 4 viên bi từ hộp đó sao cho không có đủ 3 màu
A. 465
B. 456
C. 654
D. 645
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
"sao không cho đủ 3 màu" nghĩa là gì bạn? Đủ 3 màu hay không đủ 3 màu?
Chắc là "Sao cho không đủ ba màu"
Nếu em làm là trước hết tìm số cách chọn 4 viên bất kì, sau đó tìm số cách chọn 4 viên có đủ ba màu, sau em lấy cái 4 viên bất kì trừ đi số viên có đủ 3 màu.
Nhưng mà không biết em sai ở đâu chỗ tìm 4 viên có đủ ba màu.
Đoạn này em làm là:
Số cách chọn 4 viên bất kì là: \(C_{15}^4=1365\) cách
Có \(4.5.6\) cách chọn 3 viên ba màu khác nhau, sau đó chọn thêm 1 viên bất kì từ 12 viên còn lại. Sau cùng được \(4.5.6.12=1440\) (vô lí)
Chỉ ra lỗi sai giúp em với ạ.
+ Loại 1: chọn tùy ý trong 15 viên bi có C 15 4 = 1365 cách
+ Loại 2: chọn đủ cả 3 màu có 720 cách gồm các trường hợp sau:
- Chọn 2 bi đỏ, 1 bi trắng và 1 bi vàng có 180 cách
- Chọn 1 bi đỏ, 2 bi trắng và 1 bi vàng có 240 cách
- Chọn 1 bi đỏ, 1 bi trắng và 2 bi vàng có 300 cách
Vậy có 1365 - 720 = 645 cách
Đáp án D
TH1: 4 viên được lấy chỉ gồm 2 màu đỏ và trắng.
\(\Rightarrow\) Có \(C^4_7\) cách chọn.
TH2: 4 viên được lấy chỉ gồm 2 màu đỏ và vàng.
\(\Rightarrow\) Có \(C^4_8\) cách chọn.
TH3: 4 viên được lấy chỉ gồm 2 màu trắng và vàng.
\(\Rightarrow\) Có \(C^4_9\) cách chọn.
TH2 và TH3 đã bao gồm TH lấy 4 viên chỉ có màu trắng và 4 viên chỉ có màu vàng.
\(\Rightarrow\) Có \(C^4_7+C^4_8+C^4_9-C^4_4-C^4_5=225\) cách chọn ra 4 viên bi không đủ ba màu.
a.
Có \(C_{17}^5\) cách lấy 5 viên bi tùy ý từ 17 viên bi
b.
Lấy 1 bi trắng từ 7 bi trắng, 2 bi xanh từ 4 bi xanh và 2 bi đỏ từ 6 bi đỏ
Số cách lấy là: \(C_7^1.C_4^2.C_6^2\) cách
c.
Các trường hợp thỏa mãn: 1 trắng 1 đỏ 3 xanh, 1 trắng 2 đỏ 2 xanh, 1 trắng 3 đỏ 1 xanh, 2 trắng 1 đỏ 2 xanh, 2 trắng 2 đỏ 1 xanh
Số cách lấy là:
\(C_7^1C_6^1C_4^3+C_7^1C_6^2C_4^2+C_7^1C_6^3C_4^1+C_7^2C_6^1C_4^2+C_7^2C_6^2C_4^1\) cách
Thầy có thể giải thích cụ thể hơn về câu a được không thưa thầy?
Đáp án D
+ Trường hợp 1: chọn 4 bi đỏ hoặc trắng có cách
+ Trường hợp 2: chọn 4 bi đỏ và vàng hoặc 4 bi vàng có cách
+ Trường hợp 3: chọn 3 bi trắng và vàng có cách
Vậy có cách
D