K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2018

Đáp án B

Thật vậy, giả sử M N / / B C  Ta sẽ chứng minh thiết diện là hình thang.

 

Khi đó, thiết diện là tứ giác  J M J N

 

Do đó, tứ giác  J M J N là hình thang (đpcm)

18 tháng 9 2017

26 tháng 11 2019

14 tháng 5 2017

+ Ta tìm thiết diện của hình chóp cắt bởi (α):

Trong ( SAB) dựng MQ // SA( Q thuộc SB)

Gọi I là giao điểm của AC và MN.

Trong mp ( SAC); dựng IP// SA với P thuộc SC.

Khi dó thiết diện cần tìm là  tứ giác MNPQ.

+ Tứ giác MNPQ là một hình thang khi MN// PQ hoặc MQ// PN.

=> MN//PQ  nên tứ giác MNPQ là hình thang.

Vậy để tứ giác MNPQ là hình thang thì điều kiện là MN//BC.

Chọn C

4 tháng 1 2019

7 tháng 8 2019


13 tháng 4 2018

Đáp án A.

Gọi N, Q lần lượt là trung điểm của AB, CD ⇒ M N ⊥ A B M Q ⊥ A B .  

Qua N kẻ đường thẳng song song với BC, cắt SC tại P.

Suy ra thiết diện của mặt phẳng α  và hình chóp là MNPQ.

Vì MQ là đường trung bình của hình tháng ABCD ⇒ M Q = 3 a 2 .

MN là đường trung bình của tam giác SAB ⇒ M N = S A 2 = a . 

NP là đường trung bình của tam giác SBC ⇒ N P = B C 2 = a 2 . 

Vậy diện tích hình thang MNPQ là S M N P Q = M N . N P + M Q 2 = a 2 a 2 + 3 a 2 = a 2 .

9 tháng 9 2021

Gọi (α) là mặt phẳng qua O song song với AB và SC.

AB // (α) nên (α) cắt mp(ABCD) theo giao tuyến qua O và song song với AB. Gọi M, N lần lượt là giao điểm của đường thẳng qua O song song AB với BC và AD.

Trong mặt phẳng (SAC) kẻ OP // SC (P ϵ AS) (α) cắt mp(SAB) theo giao tuyến PQ // AB (Q ϵ SB)

Thiết diện cần tìm là tứ giác MNPQ.

Tứ giác MNPQ có PQ // MN nên MNPQ là hình thang.