Tìm giá trị lớn nhất của phân thức \(\frac{2x+1}{x^2+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{2.\left(x^2-x+1\right)+1}{\left(x^2-x+1\right)}\)
\(=2+\frac{1}{\left(x^2-x+1\right)}\)
\(\cdot x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Suy ra: GTLN của phân thức: \(\frac{1}{\left(x^2-x+1\right)}:\frac{4}{3}\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của Phân thức ban đầu là: \(\frac{10}{3}\)( khi x bằng 1 phần 2 ) ( : nghĩa là là)
Gọi pt trên là A.
Ta có A = 2 + \(\frac{1}{x^2-x+1}\)
=> Pt đạt gt lớn nhất <=> \(\frac{1}{x^2-x+1}\)đạt gt lớn nhất <=> \(x^2-x+1\)đạt gt nhỏ nhất <=> x = 1.
mình không giúp được nhưng các bạn bấm vào đây
xem xong ủng hộ nha
chúc bạn học tốt
\(Ax^2+4Ax+5A-2x^2+7x-1=0\)
\(\left(A-2\right)x^2+\left(4A+7\right)x+5A-1=0\)
+A=2 => 15x +9 =0 => x =-3/5 (1)
+A khác 2 : PT có nghiệm khi :\(\Delta\ge0\Leftrightarrow\left(4A+7\right)^2+4\left(A-2\right)\left(1-5A\right)\ge0\)
16A2 +56A+49 -20A2 +44A -8 >/ 0 => 4A2 -100A -41 </ 0
=> \(\frac{25-3\sqrt{74}}{2}\le A\le\frac{25+3\sqrt{74}}{2}\)(2)
(1)(2) => \(\frac{25-3\sqrt{74}}{2}\le A\le\frac{25+3\sqrt{74}}{2}\)
=> A min=\(\frac{25-3\sqrt{74}}{2}\)
A max =\(\frac{25+3\sqrt{74}}{2}\)
\(A=\dfrac{3x+1}{2x^2-x+3}\)
\(\Rightarrow A-1=\dfrac{3x+1}{2x^2-x+3}-1\)
\(A-1=\dfrac{3x+1-2x^2+x-3}{2x^2-x+3}\)
\(A-1=\dfrac{-2x^2+4x-2}{2x^2-x+3}=\dfrac{-2\left(x^2-2x+1\right)}{2x^2-x+3}\)
\(A-1=\dfrac{-2\left(x-1\right)^2}{2x^2-x+3}\le0\)
\(\Rightarrow A\le1\)
Dấu bằng xảy ra khi x=1
a) Ta có: \(\left(x-2\right)^2\ge0\forall x\)
nên Dấu '=' xảy ra khi x-2=0
hay x=2
Vậy: Gtnn của biểu thức \(\left(x-2\right)^2\) là 0 khi x=2
GTNN :\(A=\frac{\left(2x^2+2\right)+\left(x^2-2x+1\right)}{x^2+1}=2+\frac{\left(x-1\right)^2}{x^2+1}\ge2\forall x\) có GTNN là 2
GTLN : \(A=\frac{\left(4x^2+4\right)-\left(x^2+2x+1\right)}{x^2+1}=4-\frac{\left(x+1\right)^2}{x^2+1}\le4\forall x\) có GTLN là 4
1
A ,x2-6x+10=(x-3)2+1>1=>A<5
dấu = xảy ra khi x=3
B x2-2x+5=(x-1)2+4>4=>A>-2
dâu = xay ra khi x=1
a, Ta có : \(A=\frac{5}{x^2-6x+10}=\frac{5}{\left(x-3\right)^2+1}\)
Để A lớn nhất <=> \(\left(x-3\right)^2+1\)nhỏ nhất
Ta lại có:
\(\left(x-3\right)^2\ge0\forall x\Rightarrow\left(x-3\right)^2+1\ge1\forall x\)
Vậy MaxA= 5/1=5