không tính tỉ số lượng giác , hãy sắp xếp các tỉ số lượng giác sau theo thứ tự tăng dần cos 24, sin 35 , cos 55 , sin 70 , cos 79 ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để ý rằng với các góc nhọn, khi góc lớn lên thì sin của nó lớn lên và chú ý rằng cos 20 ° = sin 70 ° , cos 40 ° = sin 50 ° và do sin α < tg α từ
sin 20 ° < sin 50 ° (= cos 40 ° ) < sin 55 ° < sin 70 ° (= cos 20 ° ) < tg 70 ° .
Suy ra sin 20 ° < cos 40 ° < sin 55 ° < cos 20 ° < 70 °
a, Ta có: cos 88 0 < sin 40 0 (= cos 50 0 ) < cos 28 0 < sin 65 0 (= cos 25 0 ) < cos 20 0
b, Ta có: cot 67 0 18 ' (= tan 22 0 42 ' ) < tan 32 0 48 ' < tan 56 0 32 ' < cot 28 0 36 ' (= tan 61 0 24 ' )
Mik chỉ bt làm thế này thôi bạn áp dụng vào bài nhá
cos75 = sin(90-75) = sin15
cos18 = sin(90-18) = sin72
Vì 15 < 65 < 70 < 72 < 79
Nên sin15 < sin 65 < sin70 < sin72 < sin79
Tít cho mik
4:
\(cos75=sin15;cos18=sin72\)
\(15< 65< 70< 72\)
=>\(sin15< sin65< sin70< sin72\)
=>\(cos75< sin65< sin70< cos18\)
5:
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
=>HB=HC=BC/2=6cm
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HA^2+6^2=10^2\)
=>HA2=64
=>HA=8(cm)
\(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot8\cdot12=4\cdot12=48\left(cm^2\right)\)
b: Xét ΔAHB vuông tại H có
\(sinB=\dfrac{AH}{AB}=\dfrac{4}{5}\)
nên \(\widehat{B}\simeq53^0\)
=>\(\widehat{C}\simeq53^0\)
\(sin16^0=sin\left(90^0-74^0\right)=cos74^0\)
\(sin60^0=sin\left(90^0-60^0\right)=cos30^0\)
Sắp xếp: \(cos16^0,cos30^0,cos43^0,cos52^0,cos74^0\)
cos16=sin 74
cos43=sin47
cos52=sin38
Vì 16<38<47<60<74
nên sin 16<sin 38<sin 47<sin60<sin74
=>sin 16<cos52<cos43<sin60<cos16
\(cos24=sin66;cos55=sin35;cos79=sin11\)
\(\Rightarrow sin11< sin35=sin35< sin66< sin70\)
\(\Rightarrow cos79< sin35=cos55< cos24< sin70\)