Xác định giá trị của tham số m để hàm số có cực trị:
A. m > 5 B. m < - 5
C. m = 5 D. - 5 < m < 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: D.
Tập xác định: D = R \ {m}
Hàm số có cực trị khi và chỉ khi y' đổi dấu trên D
⇔ x 2 - 2mx + 2 m 2 - 5 = 0 có hai nghiệm phân biệt
⇔ ∆ ' = - m 2 + 5 > 0 ⇔ - 5 < m < 5
Đáp án: C.
Tập xác định: D = R. y' = 3 x 2 - 6x + m.
Hàm số có cực trị khi và chỉ khi y' đổi dấu trên R
⇔ 3 x 2 - 6x + m = 0 có hai nghiệm phân biệt
⇔ ∆ ' = 9 - 3m > 0 ⇔ 3m < 9 ⇔ m < 3
Đáp án: C.
Tập xác định: D = R. y' = 3 x 2 - 6x + m.
Hàm số có cực trị khi và chỉ khi y' đổi dấu trên R
⇔ 3 x 2 - 6x + m = 0 có hai nghiệm phân biệt
⇔ Δ' = 9 - 3m > 0 ⇔ 3m < 9 ⇔ m < 3
Đáp án: D.
y' = 3 x 2 - 6(m - 1)x - 3(m + 1)
y' = 0 ⇔ x 2 - 2(m - 1)x - m - 1 = 0
Δ' = ( m - 1 ) 2 + m + 1 = m 2 - m + 2 ≥ 0
Tam thức m 2 - m + 2 luôn dương với mọi m ∈ R vì δ = 1 - 8 < 0 và a = 1 > 0 cho nên phương y' = 0 luôn có hai nghiệm phân biệt. Suy ra hàm số luôn có cực trị với mọi giá trị m ∈ R.
Đáp án: D.
y' = 3 x 2 - 6(m - 1)x - 3(m + 1)
y' = 0 ⇔ x 2 - 2(m - 1)x - m - 1 = 0
∆ ' = m - 1 2 + m + 1 = m 2 - m + 2 ≥ 0
Tam thức m 2 - m + 2 luôn dương với mọi m ∈ R vì δ = 1 - 8 < 0 và a = 1 > 0 cho nên phương y' = 0 luôn có hai nghiệm phân biệt. Suy ra hàm số luôn có cực trị với mọi giá trị m ∈ R.
Đáp án: B.
Hàm số đã cho có cực trị khi và chỉ khi
y' = 3 x 2 - 6(m - 1)x - 3(m + 3) = 0 có 2 nghiệm phân biệt
⇔ ∆ ' = m - 1 2 + (m + 3) = m 2 - m + 4 > 0
Ta thấy tam thức ∆ ' = m 2 - m + 4 luôn dương với mọi m vì
δ = 1 - 16 = -15 < 0, a = 1 > 0
Vậy hàm số đã cho luôn có cực trị mới mọi m ∈ R
Đáp án: B.
Hàm số đã cho có cực trị khi và chỉ khi
y' = 3 x 2 - 6(m - 1)x - 3(m + 3) = 0 có 2 nghiệm phân biệt
⇔ Δ' = ( m - 1 ) 2 + (m + 3) = m 2 - m + 4 > 0
Ta thấy tam thức Δ' = m 2 - m + 4 luôn dương với mọi m vì
δ = 1 - 16 = -15 < 0, a = 1 > 0
Vậy hàm số đã cho luôn có cực trị mới mọi m ∈ R
Đáp án: D.
⇔ Δ′ = 2m + 5 ≤ 0
dấu “=” xảy ra nhiều nhất tại hai điểm, nên hàm số nghịch biến trên các khoảng (- ∞ ; 2)
và (2; + ∞ ) khi m ≤ −5/2.
Đáp án: D.
⇔ ∆ ′ = 2m + 5 ≤ 0
dấu “=” xảy ra nhiều nhất tại hai điểm, nên hàm số nghịch biến trên các khoảng (- ∞ ; 2)
và (2; + ∞ ) khi m ≤ −5/2.
Đáp án: D.
Tập xác định: D = R \ {m}
Hàm số có cực trị khi và chỉ khi y' đổi dấu trên D
⇔ x 2 - 2mx + 2 m 2 - 5 = 0 có hai nghiệm phân biệt
⇔ Δ' = - m 2 + 5 > 0 ⇔ - 5 < m < 5