Cho hình chóp S.ABCD đáy là hình bình hành ABCD.Gọi M,N,P lần lượt là trung điểm của AB,AD,SC. Tìm giao điểm của mặt phẳng (MNP) với các cạnh của hình chóp và giao tuyến của mặt phẳng (MNP) với các mặt phẳng của hình chóp.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (SAB) và (SCD) có
\(S\in\left(SAB\right)\cap\left(SCD\right)\)
AB//CD
Do đó: \(\left(SAB\right)\cap\left(SCD\right)=xy;S\in xy\);xy//AB//CD
b: Trong mp(ABCD), gọi I là giao điểm của MN với AD
\(I\in AD\)
\(I\in MN\subset\left(MNP\right)\)
Do đó: \(I=AD\cap\left(MNP\right)\)
a: \(S\in\left(SAD\right)\cap\left(SBC\right)\)
AD//BC
=>(SAD) giao (SBC)=xy, xy đi qua S, xy//AD//BC
b: Chọn mp(SBC) có chứa BC
\(P\in SC\subset\left(SBC\right)\)
\(P\in\left(MNP\right)\)
=>\(P\in\left(MNP\right)\cap\left(SBC\right)\)
mà NP//SB
nên (MNP) giao (SBC)=xy, xy đi qua P và xy//NP//SB
=>(MNP) giao (SBC)=PN
Gọi I là giao của PN với BC
=>I trùng với N
- Ta có: S là điểm chung của hai mặt phẳng (SAD) và (SBC)
Từ S kẻ Sx sao cho Sx // AD // BC. Vậy Sx là giao tuyến của hai mặt phẳng (SAD) và (SBC).
- Ta có: M, P là trung điểm của SA, SD. Suy ra MP // AD // BC
Có: N là điểm chung của hai mặt phẳng (MNP) và (ABCD)
Từ N kẻ NQ sao cho NQ // AD.
Vậy NQ là giao tuyến của hai mặt phẳng (MNP) và (ABCD).
a) Gọi P là giao điểm của CN và AB
Ta có \(P \in CN\)suy ra \(P \in (CMN)\)
Suy ra P là giao điểm của mặt phẳng (CMN) với đường thẳng AB
Gọi E là giao điểm của MB và SB
Ta có \(E \in MP\)suy ra\(E \in (CMN)\)
Suy ra E là giao điểm của mặt phẳng (CMN) với đường thẳng SB
b) Vì M và E cùng thuộc (CMN) và (SAB) nên ME là giao tuyến của hai mặt phẳng (CMN) và (SAB)
Vì E và C cùng thuộc (CMN) và (SBC) nên EC là giao tuyến của hai mặt phẳng (CMN) và (SBC)