K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2017

Đáp án B

Ta có y ' = m x 2 − 3 m + 2 x + 5 m − 1

Để hàm số đồng biến trên khoảng   − 1 ; 2 thì  y ' ≥ 0, ∀ x ∈ − 1 ; 2 .Dấu bằng xảy ra tại hữu hạn điểm

Cách 1:

Do ta chỉ xét giá trị m nguyên âm nên m x 2 − 3 m + 2 x + 5 m − 1 = 0 là phương trình bậc hai. Đặt  f x = m x 2 − 3 m + 2 x + 5 m − 1

TH1: Hàm số có hai điểm cực trị

Để thỏa mãn   y ' ≥ 0, ∀ x ∈ 0 ; 2 thì phương trình   y ' = 0 có hai nghiệm  x 1   ;  x 2   thỏa mãn x 1 ≤ − 1 < 2 ≤ x 2  

⇔ m . f − 1 ≤ 0 m . f 2 ≤ 0 ⇔ m . m + 3 m + 2 + 5 m − 1 ≤ 0 m . 4 m − 2 3 m + 2 + 5 m − 1 ≤ 0

⇔ m 9 m + 1 ≤ 0 m 3 m − 5 ≤ 0 ⇔ m ≥ − 1 9 m ≥ 5 3 ⇔ m ≥ 5 3

(do m nguyên âm nên không thỏa mãn)

TH2: Hàm số không có điểm cực trị

Để thỏa mãn yêu cầu đề bài thi Δ < 0 m > 0 (do m nguyên âm nên không thỏa mãn)

Vậy ta chọn B.

Cách 2:

y ' ≥ 0 ⇔ m x 2 − 3 m + 2 x + 5 m − 1 ≥ 0 ⇔ m x 2 − 3 x + 5 ≥ 2 x + 1 ⇔ m ≥ 2 x + 1 x 2 − 3 x + 5

(do x 2 − 3 x + 5 > 0 ∀ x )

Đặt g x = 2 x + 1 x 2 − 3 x + 5 . Ta có  g ' x = − 2 x 2 − 2 x + 13 x 2 − 3 x + 5 2 > 0 ∀ x ∈ − 1 ; 2 . Vậy g x  đồng biến trên − 1 ; 2

Để  m ≥ g x ∀ x ∈ − 1 ; 2   thì   m ≥ max x ∈ − 1 ; 2 g x = g 2 = 5 3

a: Để hàm số đồng biến trên R thì m-2>0

hay m>2

b: Thay x=0 và y=5 vào hàm số, ta được:

m+3=5

hay m=2

a: Để hàm số đồng biến thì m-2>0

hay m>2

b: Thay x=0 và y=5 vào hàm số,ta được:

\(m+3=5\)

hay m=2

a: Để hàm số đồng biến thì m-2>0

hay m>2

b: Thay x=0 và y=5 vào hàm số,ta được:

\(m+3=5\)

hay m=2

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Để hàm số \(y = m{x^4} + (m + 1){x^2} + x + 3\) là hàm số bậc hai thì:

\(\left\{ \begin{array}{l}m = 0\\m + 1 \ne 0\end{array} \right.\) tức là \(m = 0.\)

Khi đó \(y = {x^2} + x + 3\)

Vây \(m = 0\) thì hàm số đã cho là hàm số bậc hai \(y = {x^2} + x + 3\)

b) Để hàm số \(y = (m - 2){x^3} + (m - 1){x^2} + 5\) là hàm số bậc hai thì:

\(\left\{ \begin{array}{l}m - 2 = 0\\m - 1 \ne 0\end{array} \right.\) tức là \(m = 2.\)

Khi đó \(y = (2 - 1){x^2} + 5 = {x^2} + 5\)

Vây \(m = 2\) thì hàm số đã cho là hàm số bậc hai \(y = {x^2} + 5\)

a: y=m^2x-4mx+8m+4x+3

=x(m^2-4m+4)+8m+3

Để đây là hàm số bậc nhất thì m^2-4m+4<>0

=>(m-2)^2<>0

=>m-2<>0

=>m<>2

b: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}2018-2m>=0\\\sqrt{2018-2m}< >0\end{matrix}\right.\Leftrightarrow2018-2m>0\)

=>2m<2018

=>m<1009

1: \(f'\left(x\right)=\dfrac{1}{3}\cdot3x^2+2x-\left(m+1\right)=x^2+2x-m-1\)

\(\Delta=2^2-4\left(-m-1\right)=4m+8\)

Để f'(x)>=0 với mọi x thì 4m+8<=0 và 1>0

=>m<=-2

=>\(m\in\left\{-10;-9;...;-2\right\}\)

=>Có 9 số

NV
17 tháng 8 2021

Hàm là bậc nhất khi:

a. \(3m-2\ne0\Rightarrow m\ne\dfrac{2}{3}\)

b. \(3-m>0\Rightarrow m< 3\)

c. \(\left\{{}\begin{matrix}2m-1\ne0\\m+2\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\m\ne-2\end{matrix}\right.\)

d. \(\left\{{}\begin{matrix}m^2-4=0\\m+2\ne0\end{matrix}\right.\) \(\Rightarrow m=2\)

a: ĐKXĐ: \(m\ne\dfrac{2}{3}\)

b: ĐKXĐ: \(m< 3\)

c: ĐKXĐ: \(\left[{}\begin{matrix}m\ge\dfrac{1}{2}\\m< -2\end{matrix}\right.\)

d: ĐKXĐ: \(m=2\)

30 tháng 12 2023

Bài 1:

Để hàm số y=(2-m)x-2 là hàm số bậc nhất thì 2-m<>0

=>m<>2

a=2-m

b=-2

Bài 2:

a: Để hàm số y=(m-5)x+1 đồng biến trên R thì m-5>0

=>m>5

b: Để hàm số y=(m-5)x+1 nghịch biến trên R thì m-5<0

=>m<5

Bài 3:

a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}3-m=2\\2\ne m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=1\\m\ne2\end{matrix}\right.\Leftrightarrow m=1\)

b: Để (d1) cắt (d2) thì \(3-m\ne2\)

=>\(m\ne1\)

c: Để (d1) cắt (d2) tại một điểm trên trục tung thì

\(\left\{{}\begin{matrix}3-m\ne2\\m=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\ne1\\m=2\end{matrix}\right.\)

=>m=2