Đồ thị hàm số y = ax + b x − 1 cắt trục tung tại điểm A 0 ; − 1 , tiếp tuyến của đồ thị tại điểm A có hệ số góc k = - 3 . Giá trị của a và b là
A. a = 2 ; b = 2
B. a = 1 ; b = 1
C. a = 2 ; b = 1
D. a = 1 ; b = 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Ta có y ' = f ' ( x ) = a d - b c ( c x + d ) 2 . Từ đồ thị hàm số y= f’(x) ta thấy:
Đồ thị hàm số y= f’(x) có tiệm cận đứng x=1 nên –d/c= 1 hay c= -d
Đồ thị hàm số y= f’(x ) đi qua điểm (2;2)
⇒ a d - b c ( 2 c + d ) 2 = 2 ↔ a d - b c = 2 ( 2 c + d ) 2
Đồ thị hàm số y= f’(x) đi qua điểm (0;2)
⇒ a d - b c d 2 = 2 ↔ a d - b c = 2 d 2
Đồ thị hàm số y=f(x) đi qua điểm (0;3) nên b/d= 3 hay b= 3d
Giải hệ gồm 4 pt này ta được a=c= -d và b= 3d .
Ta chọn a=c= 1 ; b= -3 ; d= -1
⇒ y = x - 3 x - 1
Chọn D.
a.
Do ĐTHS song song với \(y=-x-2\Rightarrow a=-1\)
Do đồ thị qua A nên:
\(a.1+b=2\Rightarrow b=2-a=3\)
Vậy pt hàm số có dạng: \(y=-x+3\)
b.
Do đồ thị hàm số cắt trục tung tại điểm có tung độ bằng -2 nên:
\(-2=a.0+b\Rightarrow b=-2\)
Do ĐTHS cắt trục hoành tại điểm có hoành độ -2
\(\Rightarrow0=a.\left(-2\right)+b\Rightarrow a=\dfrac{b}{2}=-1\)
Vậy hàm số có dạng: \(y=-x-2\)
Đồ thị hàm số y = a x + b cắt trục hoành y = 0 ⇒ a x + b = 0 ⇔ x = − b a
ĐTHS y = a x + b cắt trục tung x = 0 ⇒ y = a . 0 + b ⇒ y = b
Vậy hàm số y = a x + b ( a ≠ 0 ) cắt trục hoành tại điểm có hoành độ bằng − b a và cắt trục tung tại điểm có tung độ bằng b
Đáp án cần chọn là: B
Đáp án B
Đồ thị hàm số đi qua điểm A(0;−1) do đó − 1 = 0 + b 0 − 1 ⇒ b = 1
Tiếp tuyến của đồ thị tại A(0;−1) có hệ số góc bằng -3, do đó y ' 0 = − 3
⇔ y ' 0 = − a − 1 0 − 1 2 = − 3 ⇔ a = 2
Vậy a+b=3.
Vì đồ thị hàm số y=ax+b cắt hai điểm \(\left(-3;0\right)\) và \(\left(0;-2\right)\) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}-3a+b=0\\b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=-b=2\\b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{2}{3}\\b=-2\end{matrix}\right.\)
Vì đồ thị hàm số y=ax+b đi qua hai điểm \(\left(-3;0\right)\) và \(\left(0;-2\right)\) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}-3a+b=0\\b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=-b=2\\b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{2}{3}\\b=-2\end{matrix}\right.\)