Tìm x, biết lg2x < 1
A. x > 5 B. 0 < x < 5
C. x > 10 D. 0 < x < 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm xx biết: \left(x^{4}\right)^{3}=\dfrac{x^{19}}{x^{6}}(x4)3=x6x19
Trả lời: x=x=
a: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{\sqrt{x}-1+1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{5}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}}=\dfrac{x-1}{\sqrt{x}}+\dfrac{5}{\sqrt{x}}=\dfrac{x+4}{\sqrt{x}}\)
b: Để A=5 thì \(x+4=5\sqrt{x}\)
=>x=1(loại) hoặc x=16(nhận)
\(\left(a\right):2x-7\sqrt{x}+3=0\left(x\ge0\right)\\ < =>\left(2x-6\sqrt{x}\right)-\left(\sqrt{x}-3\right)=0\\ < =>2\sqrt{x}\left(\sqrt{x}-3\right)-\left(\sqrt{x}-3\right)=0\\ < =>\left(2\sqrt{x}-1\right)\left(\sqrt{x}-3\right)=0\\ =>\left[{}\begin{matrix}2\sqrt{x}-1=0\\\sqrt{x}-3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{4}\left(TM\right)\\x=9\left(TM\right)\end{matrix}\right.\)
\(\left(b\right):3\sqrt{x}+5< 6\\ < =>3\sqrt{x}< 1\\ < =>\sqrt{x}< \dfrac{1}{3}\\ < =>0\le x< \dfrac{1}{9}\)
\(\left(c\right):x-3\sqrt{x}-10< 0\\ < =>\left(x-5\sqrt{x}\right)+\left(2\sqrt{x}-10\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}-5\right)+2\left(\sqrt{x}-5\right)< 0\\ < =>\left(\sqrt{x}-5\right)\left(\sqrt{x}+2\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}-5< 0\\\sqrt{x}+2>0\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}0\le x< 25\\x\ge0\end{matrix}\right.< =>0\le x< 25\)
\(\left(d\right):x-5\sqrt{x}+6=0\left(x\ge0\right)\\ < =>\left(x-2\sqrt{x}\right)-\left(3\sqrt{x}-6\right)=0\\ < =>\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=0\\ < =>\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)=0\\ =>\left[{}\begin{matrix}\sqrt{x}-3=0\\\sqrt{x}-2=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=9\\x=4\end{matrix}\right.\left(TM\right)\)
\(\left(e\right):x+5\sqrt{x}-14< 0\\ < =>\left(x+7\sqrt{x}\right)-\left(2\sqrt{x}+14\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}+7\right)-2\left(\sqrt{x}+7\right)< 0\\ < =>\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}+7>0\\\sqrt{x}-2< 0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x\ge0\\0\le x< 4\end{matrix}\right.< =>0\le x< 4\)
A.\(\left(x-15\right).15=0\)
\(x-15=0:15\)
\(x-15=0\)
\(x=15+0\)
\(x=15\)
B.\(32\left(x-10\right)=32\)
\(x-10=32:32\)
\(x-10=1\)
\(x=10+1\)
\(x=11\)
`a) `
`(x-15)xx15=0`
`<=> x-15 = 0 : 15`
`<=> x-15 = 0`
`<=> x = 0 + 15`
`<=> x =15`
`b)`
`32.(x-10)=32`
`<=> x - 10 = 32:32`
`<=>x-10=1`
`<=> x = 1+10`
`<=> x =11`
`c)`
`(x-5).(x-7)=0`
`<=>` \(\left[ \begin{array}{l}x-5 = 0\\x-7=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=5\\x=7\end{array} \right.\)
`d)`
`(x-35)xx35=35`
`<=> x - 35 = 35:35`
`<=> x - 35 = 1`
`<=> x = 1+35`
`<=> x = 36`
a, 7\(x\).(2\(x\) + 10) =0
\(\left[{}\begin{matrix}x=0\\2x+10=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\2x=-10\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(x\in\) {-5; 0}
b, -9\(x\) : (2\(x\) - 10) = 0
9\(x\) = 0
\(x\) = 0
c, (4 - \(x\)).(\(x\) + 3) = 0
\(\left[{}\begin{matrix}4-x=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
Vậy \(x\in\) {-3; 4}
a) (x + 5)(x - 4) = 0
x + 5 = 0 hoặc x - 4= 0
x thuộc {-5 ; 4}
b) (x - 10)(x- 3) = 0
x - 10 = 0 hoặc x - 3 = 0
x thuộc {3;10}
c) (3 - x)(x - 3) = 0
3 - x = 0 ; x - 3 = 0
< = . x= 3 (thõa mãn cả 2 ĐK)
d) x(x + 1) = 0
x = 0 hoặc x+ 1 = 0
=> x = -1
Vậy x thuộc {-1 ; 0}
a)(x+5)(x-4)=0
nên x+5=0 hoặc x-4=0
x=0-5 x=0+4
x=-5 x=4
b)(x-10)(x-3)=0
nên x-10=0 hoặc x-3=0
x=0+10 x=0+3
x=10 x=3
c)(3-x)(x-3)=0
nên 3-x=0 hoặc x-3=0
x=3-0 x=0+3
x=3
d)x(x+1)=0
nên x=0 hoặc x+1=0
x=0-1
x=-1
Đáp án: B.