K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2019

Đáp án C

Xét các số có 9 chữ số khác nhau: 

- Có 9 cách chọn chữ số ở vị trí đầu tiên.

- Có cách chọn 8 chữ số tiếp theo 

Do đó số các số có 9 chữ số khác nhau là:

Xét các số thỏa mãn đề bài:

- Có cách chọn 4 chữ số lẻ.

- Đầu tiên ta xếp vị trí cho chữ số 0, do chữ số 0 không thể đứng đầu và cuối nên có 7 cách xếp.

- Tiếp theo ta có cách chọn và xếp hai chữ số lẻ đứng hai bên chữ số 0. 

- Cuối cùng ta có 6! cách xếp 6 chữ số còn lại vào 6 vị trí còn lại. 

Gọi A là biến cố đã cho, khi đó

Vậy xác suất cần tìm là 

14 tháng 8 2018

15 tháng 3 2019

Đáp án D.

22 tháng 9 2018

Chọn D

Số phần tử của không gian mẫu là 

Gọi số cần tìm là 

* Trường hợp  a 2 = 0:  Khi đó  a 1 ,   a 3 lẻ nên có  A 5 2 cách xếp, hai chữ số lẻ còn lại có C 3 2 A 6 2 cách xếp, 4 chữ số chẵn còn lại có 4! cách xếp. Vậy theo quy tắc nhân có 

A 5 2 C 3 2 A 6 2 .4! = 43200 (số)

Vậy xác suất cần tính là: 

14 tháng 6 2019

Xét các số có 9 chữ số khác nhau

Có 9 cách chọn chữ số ở vị trí đầu tiện. Có  A 9 8  cách chọn 8 chữ số tiếp theo

Do đó có 9.  A 9 8  số có 9 chữ số khác nhau

Gọi A là biến cố: “ số được chọn có đúng bốn chữ số lẻ sao cho số 0 luôn đứng giữa hai chữ số lẻ”

Có C 5 4  cách chọn 4 chữ số lẻ. Đầu tiên la xếp vị trí cho chữ số 0, do chữ số 0 không thể đứng đầu và cuối nên có 7 cách xếp.

 

Tiếp theo ta có A 4 2  cách chọn và xếp hai chữ số lẻ đứng 2 bên chữ số 0.

Khi đó có 6! Cách xếp 6 chữ số còn lại vào 6 vị trí còn lại.

NV
2 tháng 11 2021

Không gian mẫu: \(n\left(\Omega\right)=10!\)

Chọn 5 chữ số từ 6 chữ số còn lại (khác 0,3,6,8): có \(C_6^5\) cách

Hoán vị 6 chữ số (5 chữ số được chọn nói trên và số 8): \(6!\) cách

Tổng cộng: \(6!.C_6^5\) số

Xác suất: \(P=\dfrac{6!.C_6^5}{10!}=...\)

NV
13 tháng 12 2020

Không gian mẫu: \(A_9^5\)

Gọi số cần lập có dạng \(\overline{abcde}\)

\(\Rightarrow e\) có 4 cách chọn

Chọn bộ abcd:

- Chọn 2 số lẻ từ 5 số lẻ và hoán vị chúng: \(A_5^2\) cách

- Chọn 2 số chẵn từ 3 số chẵn còn lại (khác e): \(C_3^2\) cách

\(\Rightarrow\) Bộ abcd có \(A_5^2.C_3^2.3!\) cách

Xác suất: \(P=\dfrac{4.A_5^2.C_3^2.3!}{A_9^4}=...\)

11 tháng 7 2018

6 tháng 9 2019

NV
26 tháng 1 2022

Không gian mẫu: \(n_{\Omega}=A_8^5-A_7^4=5880\)

Chọn 3 chữ số chẵn: \(C_4^3=4\) cách

Chọn 2 chữ số lẻ: \(C_4^2=6\) cách

Xếp 2 số lẻ liền nhau, sau đó hoán vị với 3 chữ số chẵn: \(2!.4!=48\) cách

Chọn 3 chữ số chẵn sao cho có mặt chữ số 0: \(C_3^2=3\) cách

Hoán vị 5 chữ số sao cho 2 số lẻ liền nhau và số 0 đứng đầu: \(2!.3!=12\) cách

\(\Rightarrow6.\left(4.48-3.12\right)=936\)

Xác suất: \(P=\dfrac{936}{5880}=\dfrac{39}{245}\)

25 tháng 3 2023

cho em hỏi sao không gian mẫu lại phải trừ đi cho A47 v ạ