chứng minh rằng 3n=4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(ƯCLN\left(3n+5;3n+4\right)=d\)
Ta có :
\(3n+5\text{⋮}d\)
\(3n+4\text{⋮}d\)
\(\Rightarrow\left(3n+5\right)-\left(3n+4\right)\text{⋮}d\)
\(1\text{⋮}d\)
\(d\)lớn nhất \(\Rightarrow d=1\)
\(\Rightarrow\frac{3n+5}{3n+4}\)là phân số tối giản
\(3^{n+2}-2^{n+4}+3^n+2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+4}-2^n\right)=\left(3^n.9+3^n\right)-\left(2^n.16-2^n\right)=3^n.\left(9+1\right)-2^n.\left(16-1\right)=3^n.10-2^n.15=3^{n-1}.3.10-2^{n-1}.2.15=3^{n-1}.30-2^{n-1}.30=30.\left(3^{n-1}-2^{n-1}\right)\)
Vì \(30⋮30=>30.\left(3^{n-1}-2^{n-1}\right)⋮30=>3^{n+2}-2^{n+4}+3^n+2^n⋮30\)
Gọi ƯC (3n+4;2n+3)=d
ta có :3n+4 chia hết d
2n+3 chia hết d
=>(2n+3) - (3n+4) chia hết d
=>3x(2n+3) - 2x(3n+4) chia hết d
=>6n+9 - 6n + 8 chia hết d
=>6n-6n + 9 - 8 chia hết d
=>0+1 chia hết d
=>1 chia hết d
=>1=d
vì ƯC (3n+4;2n+3)=1 nên 3n+4/2n+3 là phân số tối giản
min = 2 => (3 . 2 + 7)2 - 169 = 149 - 169 (loại)
min = 3 => (3 . 3 + 7)2 - 169 = 256 - 169 = 87
87 : 4 = 21 ( dư 3 ) ( loại )
min = 4 => (3 . 4 + 7)2 - 169 = 351 - 169 = 182
182 : 4 = 45 ( dư 2 )
min = 5 => (3 . 5 + 7)2 - 169 = 484 - 169 = 315
315 : 4 = 78 ( dư 3 )
min = 6 => (3 . 6 + 7)2 - 169 = 625 - 169
\(625-1⋮4;169-1⋮4\)
Vậy thỏa mãn ĐK : \(n⋮6\)
Đặt ƯCLN (2n+3, 3n+4) = d
=> 2n+3 chia hết cho d, 3n+4 chia hết cho d
=> 3(2n+3) = 6n+9 chia hết cho d, 2(3n+4)=6n+8 chia hết cho d
=> (6n+9)-(6n+8)= 1 chia hết cho d
=> d=1
Vì ƯCLN (2n+3, 3n+4)=1 nên 2n+3 và 3n+4 nguyên tố cùng nhau.
3n=4
ba.n=bốn
ba.n=bố.n
mà ba=bố
=>3n=4(đpcm)
gia bao la than dong toan hoc