Viên đạn khối lượng m = 1,2kg đang bay ngang với vận tốc vo = 14m ở độ cao h= 20m thì vỡ ra làm hai mảnh. Mảnh thứ nhất có khối lượng m1 = 0,8kg, ngay sau khi nổ bay thẳng đứng xuống và ngay khi sắp chạm đất có vận tốc v 1 ' = 40m/s. Tìm độ lớn và hướng vận tốc của mảnh thứ hai ngay sau khi vỡ . Bỏ qua sức cản không khí.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : m . v0 = m1v1 + m2v2
Trong đó v1 v2 là vận tốc các nửa mảnh đạn ngay sau khi vỡ, v1 có chiều thẳng đứng
Ta có : \(v^2_1-v^2_1=2gh\)
\(\Rightarrow v_1=\sqrt{v_1^2-2gh}=\sqrt{40^2-20.10.20}=20\sqrt{3}\) (m/s)
Vì v0 vuông góc với v1
Nên m2 . v2 = \(\sqrt{\left(mv_0\right)^2+\left(m_1v_1\right)^2}\)
\(m_2v_2=\sqrt{\left(0,8.12,5\right)^2+\left(0,5.20\sqrt{3}\right)^2}=20\)
\(m_2v_2=20kg\) (m/s)
\(v_2=\frac{20}{m^2}=\frac{20}{0,3}\approx66,7m\)
Đặt a v0 , v2 Ta có tga = \(\frac{m_1v_1}{mv_0}=\sqrt{3}\Rightarrow a=60^o\)
Vậy ngay sau khi nổ, mảnh đạn II bay chếch lên, nghiêng góc α = 60o so với phương ngang với vận tốc 66,7 m/s.
Khi đạn nổ bỏ qua sức cản của không khí nên được coi như là một hệ kín. Vận tốc mảnh nhỏ trước khi nổ là
v 1 / 2 − v 1 2 = 2 g h ⇒ v 1 = v 1 / 2 − 2 g h ⇒ v 1 = 100 2 − 2.10.125 = 50 3 ( m / s )
Theo định luật bảo toàn động lượng
p → = p → 1 + p → 2
Với
p = m v = ( 2 + 3 ) .50 = 250 ( k g m / s ) p 1 = m 1 v 1 = 2.50 3 = 100 3 ( k g m / s ) p 2 = m 2 v 2 = 3. v 2 ( k g m / s )
Vì v → 1 ⊥ v → ⇒ p → 1 ⊥ p → theo pitago
⇒ p 2 2 = p 1 2 + P 2 ⇒ p 2 = p 1 2 + p 2 = ( 100 3 ) 2 + 250 2 = 50 37 ( k g m / s )
⇒ v 2 = p 2 3 = 50 37 3 ≈ 101 , 4 ( m / s )
Mà sin α = p 1 p 2 = 100 3 50 37 ⇒ α = 34 , 72 0
Khi đạn nổ bỏ qua sức cản của không khí nên được coi như là một hệ kín.
Vận tốc mảnh nhỏ trước khi nổ là:
v 1 / 2 = v 1 2 = 2 g h ⇒ v 1 = v 1 / 2 − 2 g h
⇒ v 1 = 100 2 − 2.10.125 = 50 3 m / s
+ Theo định luật bảo toàn động lượng: p → = p → 1 + p → 2
Với p = m v = 2 + 3 .50 = 250 k g . m / s
p 1 = m 1 v 1 = 2.50 3 = 100 3 k g . m / s p 2 = m 2 . v 2 = 3. v 2 k g . m / s
+ Vì v → 1 ⊥ v → 2 ⇒ p → 1 ⊥ p → Theo pitago
p 2 2 = p 1 2 + p 2 ⇒ p 2 = p 1 2 + p 2 = 100 3 2 + 250 2 = 50 37 k g . m / s
⇒ v 2 = p 2 3 = 50 37 3 ≈ 101 , 4 m / s + sin α = p 1 p 2 = 100 3 50 37 ⇒ α = 34 , 72 0
Chọn đáp án B
Vận tốc viên đạn trước khi nổ:
\(tan45^o=\dfrac{p}{p_1}=\dfrac{m\cdot v}{m_1\cdot v_1}=\dfrac{2v}{0,5\cdot400}\)
\(\Rightarrow v=100\)m/s
Khi đạn nổ bỏ qua sức cản của không khí nên được coi như là một hệ kín.
Vận tốc của mảnh nhỏ trước khi nổ là:
v 1 / − v 1 2 = 2 g h ⇒ v 1 = v 1 / 2 − 2 g h
Theo định luật bảo toàn động lượng: p → = p → 1 + p → 2
+ Với p = m v = 0 , 5 + 0 , 3 .12 , 5 = 10 k g . m / s p 1 = m 1 v 1 = 0 , 5.20 3 = 10 3 k g . m / s p 2 = m 2 v 2 = 0 , 3 v 2 k g . m / s
+ Vì v → 1 ⊥ v → 2 ⇒ p → 1 ⊥ p → theo pitago
⇒ p 2 2 = p 1 2 + p 2 ⇒ p 2 = p 1 2 + p 2 = 10 3 2 + 10 2 = 20 k g m / s
⇒ v 2 = p 2 0 , 3 = 20 0 , 3 ≈ 66 , 7 m / s
+ Mà sin α = p 1 p 2 = 10 3 20 ⇒ α = 60 0
Vậy mảnh hai chuyển động theo phương hợp với phương thẳng đứng một góc 60° với vận tốc 66,67 (m/s)
Chọn đáp án B
Khi đạn nổ bỏ qua sức cản của không khí nên được coi như là một hệ kín. Vận tốc mảnh nhỏ trước khi nổ là
v 1 / 2 − v 1 2 = 2 g h ⇒ v 1 = v 1 / 2 − 2 g h ⇒ v 1 = 40 2 − 2.10.20 = 20 3 ( m / s )
Theo định luật bảo toàn động lượng p → = p → 1 + p → 2
Với p = m v = ( 0 , 5 + 0 , 3 ) .12 , 5 = 10 ( k g m / s ) p 1 = m 1 v 1 = 0 , 5.20 3 = 10 3 ( k g m / s ) p 2 = m 2 v 2 = 0 , 3. v 2 ( k g m / s )
Vì v → 1 ⊥ v → ⇒ p → 1 ⊥ p → t h e o p i t a g o ⇒ p 2 2 = p 1 2 + P 2 ⇒ p 2 = p 1 2 + p 2 = ( 10 3 ) 2 + 10 2 = 20 ( k g m / s )
⇒ v 2 = p 2 0 , 3 = 20 0 , 3 ≈ 66 , 67 ( m / s ) M à sin α = p 1 p 2 = 10 3 20 ⇒ α = 60 0
Vậy mảnh hai chuyển động theo phương hợp với phương ngang một góc 60 0 với vận tốc 66 , 67 ( m / s )
Xét hệ gồm 2 mảnh đạn trong thời gian nổ, đây là hệ kín nên ta áp dụng định luật bảo toàn động lượng: \(\overrightarrow{p_1}+\overrightarrow{p_2}=\overrightarrow{p_h}\)
Trong đó: \(p_h=mv=195\left(kg.m/s\right)\)
\(p_1=m_1v_1=90\sqrt{3}\left(kg.m/s\right)\)
Áp dụng định lý hàm cos: \(p_2=\sqrt{p_1^2+p_h^2-2p_1p_h\cos\left(60^0\right)}\) => v2=p2/m2 =..... tự tính
Gọi \(\beta\) là góc hợp bởi phương ngang và mảnh thứ 2 ta có: \(\cos\beta=\dfrac{p_h^2+p_1^2-p_2^2}{2p_hp_1}=.......\) tự tính nốt :D
Xe tiếp tục chuyển động theo chiều cũ với vận tốc 0,3m/s. Vì ngoại lực tác dụng lên hệ là trọng lực, rất nhỏ so với nội lực tương tác (lực làm vỡ viên đạn thành hai mảnh) nên động lượng của hệ ngay trước và sau khi đạn vỡ được bảo toàn.
Vậy, ngay sau khi vỡ, mảnh đạn thứ hai bay chếch lên, nghiêng góc 58,7° so với phương ngang với vận tốc 70m/s.