K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2017

16 tháng 11 2021

Đề thiếu rồi bạn

c: Ở hai hàm số trên, nếu lấy biến x cùng một giá trị thì f(x) sẽ nhỏ hơn g(x) 3 đơn vị

24 tháng 10 2021

\(a,f\left(-2\right)=\dfrac{3}{4}\left(-2\right)=-\dfrac{3}{2}\\ f\left(0\right)=\dfrac{3}{4}\cdot0=0\\ f\left(1\right)=\dfrac{3}{4}\cdot1=\dfrac{3}{4}\\ b,g\left(-2\right)=\dfrac{3}{4}\left(-2\right)+3=-\dfrac{3}{2}+3=\dfrac{3}{2}\\ g\left(0\right)=\dfrac{3}{4}\cdot0+3=3\\ g\left(1\right)=\dfrac{3}{4}\cdot1+3=\dfrac{15}{4}\)

27 tháng 12 2021

a: Thay x=3 và y=-42 vào y=ax, ta được:

3a=-42

hay a=-14

27 tháng 12 2021

b nữa bạn ơi

 

2 tháng 3 2019

a) Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

c) Từ kết quả câu a, b ta được bảng sau:

Để học tốt Toán 9 | Giải bài tập Toán 9

Nhận xét:

- Hai hàm số

Để học tốt Toán 9 | Giải bài tập Toán 9

là hai hàm số đồng biến vì khi x tăng thì y cũng nhận được các giá trị tương ứng tăng lên.

- Cùng một giá trị của biến x, giá trị của hàm số y = g(x) luôn luôn lớn hơn giá trị tương ứng của hàm số y = f(x) là 3 đơn vị.

13 tháng 11 2023

a: \(F\left(3\right)=3\left(3-2\right)=3\cdot1=3\)

\(\left[F\left(\dfrac{2}{3}\right)\right]^2=\left[\dfrac{2}{3}\cdot\left(\dfrac{2}{3}-2\right)\right]^2\)

\(=\left[\dfrac{2}{3}\cdot\dfrac{-4}{3}\right]^2=\left(-\dfrac{8}{9}\right)^2=\dfrac{64}{81}\)

\(G\left(-\dfrac{1}{2}\right)=-\left(-\dfrac{1}{2}\right)+6=6+\dfrac{1}{2}=\dfrac{13}{2}\)

b: F(x)=0

=>x(x-2)=0

=>\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

c: F(a)=G(a)

=>\(a\left(a-2\right)=-a+6\)

=>\(a^2-2a+a-6=0\)

=>\(a^2-a-6=0\)

=>(a-3)(a+2)=0

=>\(\left[{}\begin{matrix}a-3=0\\a+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=3\\a=-2\end{matrix}\right.\)

15 tháng 12 2017

21 tháng 8 2018

Ta có 

Bảng biến thiên của hàm số y= g( x)

VYxMvmtHGN5P.png

Dựa vào bảng biến thiên ta thấy hàm số đồng biến trên khoảng ( 3: + ∞)  hàm số nghịch biến trong khoảng (-∞; -3) .

Hàm số có 3 cực trị, hàm số đạt giá trị nhỏ nhất tại x= ±3

Vậy có 3 khẳng định đúng là khẳng định I, II, IV

Chọn C.