Đặt A = ( x-1)^3 + ( 2x+1)^2
B = (x+3)^3 - 2 ( 3x-1)^2
Tìm A - B và tìm nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,2x\left(x^3-3\right)-2x^4=18\\ 2x^4-6x-2x^4=18\\ -6x=18\\ x=-3\)
\(b,9x\left(4-x\right)+\left(3x+1\right)^2=2\\ 36x-9x^2+9x^2+6x+1=2\\ 42x=2-1\\ 42x=1\\ x=\dfrac{1}{42}\)
\(a,\Leftrightarrow2x^4-3x-2x^4=18\Leftrightarrow-3x=18\Leftrightarrow x=-6\\ b,\Leftrightarrow36x-9x^2+9x^2+6x+1=2\\ \Leftrightarrow42x=1\Leftrightarrow x=\dfrac{1}{42}\)
a; Bậc của A(x) là 3
Bậc của B(x) là 3
b: \(A\left(x\right)+B\left(x\right)=5x^3-x^2+x-5\)
\(A\left(x\right)-B\left(x\right)=-x^3-5x^2+3x+7\)
c: C(x)=0
=>5x-15=0
hay x=3
`a)`
`@` Bậc của `A(x)` là: `3`
`@` Bậc của `B(x)` là: `3`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
`b)`
`@A(x)+B(x)=2x^3-3x^2+2x+1+3x^3+2x^2-x-6`
`=5x^3-x2+x-5`
`@A(x)-B(x)=2x^3-3x^2+2x+1-3x^3-2x^2+x+6`
`=-x^3-5x^2+3x+7`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
`c)` Cho `C(x)=0`
`=>5x-15=0`
`=>5x=15`
`=>x=3`
Vậy nghiệm của `C(x)` là `x=3`
a) \(\left(2x-3\right)\left(2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=3\\2x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b) \(\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)
c) \(2x\left(3x-1\right)-3x\left(5+2x\right)=0\)
\(\Rightarrow x\left[2\left(3x-1\right)-3\left(5+2x\right)\right]=0\)
\(\Rightarrow x\left(6x-2-15-6x\right)\)
\(\Rightarrow-16x=0\)
\(\Rightarrow x=0\)
d) \(\left(3x-2\right)\left(3x+2\right)-4\left(x-1\right)=0\)
\(\Rightarrow9x^2-4-4x+4=0\)
\(\Rightarrow9x^2-4x=0\)
\(\Rightarrow x\left(9x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\9x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\end{matrix}\right.\)
\(a,\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\ b,\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)
Bài 2:
a: Ta có: \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow-14x=-4\)
hay \(x=\dfrac{2}{7}\)
b: Ta có: \(2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\)
\(\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\)
\(\Leftrightarrow x^3=-8\)
hay x=-2
Bài 1:
a: Ta có: \(I=x\left(y^2-xy^2\right)+y\left(x^2y-xy+x\right)\)
\(=xy^2-x^2y^2+x^2y^2-xy^2+xy\)
\(=xy\)
=1
b: Ta có: \(K=x^2\left(y^2+xy^2+1\right)-\left(x^3+x^2+1\right)\cdot y^2\)
\(=x^2y^2+x^3y^2+x^2-x^3y^2-x^2y^2-y^2\)
\(=x^2-y^2\)
\(=\dfrac{1}{4}-\dfrac{1}{4}=0\)
a (x + 2) - x(x + 3) = 2
x + 2 - x(x + 3) - 2 = 0
x + x(x + 3) = 0
x(1 + x + 3) = 0
x(x + 4) = 0
x = 0 hoặc x + 4 = 0
*) x + 4 = 0
x = -4
Vậy x = -4; x = 0
b) (x + 2)(x - 2) - (x + 1)² = 7
x² - 4 - x² - 2x - 1 = 7
-2x - 5 = 7
-2x = 7 + 5
-2x = 12
x = 12 : (-2)
x = -6
c) 6x² - (2x + 1)(3x - 2) = 1
6x² - 6x² + 4x - 3x + 2 = 1
x + 2 = 1
x = 1 - 2
x = -1
d) (x + 2)(x + 3) - (x - 2)(x + 1) = 2
x² + 3x + 2x + 6 - x² - x + 2x + 2 = 2
6x + 8 = 2
6x = 2 - 8
6x = -6
x = -6 : 6
x = -1
e) 6(x - 1)(x + 1) - (2x - 1)(3x + 2) + 3 = 0
6x² - 6 - 6x² - 4x + 3x + 2 + 3 = 0
-x - 1 = 0
x = -1
* A - B = (x - 1)3 + (2x + 1)2 - (x + 3)3 - 2.(3x - 1)2
= x3 - 3x2 + 3x + 4x2 + 4x + 1 - x3 - 9x2 - 27x - 27 - 2.(9x2 - 6x + 1)
= x3 - 3x2 + 3x + 4x2 + 4x + 1 - x3 - 9x2 - 27x - 27 - 18x2 + 12x - 2
= -26x2 - 8x - 28
* Có: -26x2 - 8x - 28 = 0 , mà -26x2 - 8x - 28 > 0 => vô nghiệm
nhầm nha
*** A - B =(x - 1)3 + (2x + 1)2 - (x + 3)3 + 2 (3x - 1)2
= x3 - 3x2 + 3x - 1 + 4x2 + 4x + 1 - x3 - 9x2 - 27x - 27 + 18x2 - 12x + 2
= 10x2 - 32x - 25
*** 10x2 - 3x - 25 = 0
Có : \(\Delta=\left(-3\right)^2-4.\left(-25\right).10=1009\Rightarrow\sqrt{\Delta}=\sqrt{1009}\)
\(\Rightarrow x=\frac{3+\sqrt{1009}}{20}\) hoặc \(x=\frac{3-\sqrt{1009}}{20}\)
Vậy pt có 2 nghiệm trên