Hãy chứng minh 2 số tự nhiên liên tiếp luôn là hai số nguyên tố cùng nhau.
( Giải thích rõ ràng, ai trả lời nhanh và đúng nhất mk sẽ tick nhé!!! )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2n + 5 và 3n+ 7
=> Gợi UCLN của 2n+ 5 và 3n+ 7 là d
=> 2n+5 chia hết cho d
=> 3n+7 chai hết cho d
=> 3( 2n+5) chia hết cho d
=> 2( 3n+7) chia hết cho d
=> 6n + 15 chia hết cho d
=> 6n+ 14 chia hết cho d
=> 6n+ 15- 6n + 14 chia hết cho d
=> 1 chia hết cho d
=> d= 1
=> UCLN ( 2n+5) và 3n+7 là 1
=> đpcm
Tick nhé
Gọi UCLN(2n + 5; 3n + 7) là d
=> 2n + 5 chia hết cho d => 3(2n + 5) chia hết cho d
3n + 7 chia hết cho d => 2(3n + 7) chia hết cho d
=> 3(2n + 5) - 2(3n + 7) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=>UCLN(2n + 5; 3n + 7) = 1
Vậy...
Số nguyên tố chỉ chia hết cho 1 và chính nó
Vậy ta có 2TH:
TH1: n-2=1\Rightarrow n=3
Thay n=3 vào n2+n−1n2+n−1 ta có
32+3−1=1132+3−1=11(là số nguyên tố)
TH2: n2+n−1=1n2+n−1=1\Rightarrow n=1 và n=-2(loại)
Thay n=1 vào n-2 ta có:
1-2=-1(loại)
\Rightarrow n=3
Vì p là tích của 2 số là (n-2) và (n^2+n-1)
=> p là nguyên tố thì một trong 2 số trên phải bằng 1 (nếu cả hai tích số đều lớn hơn 1 => p là hợp số, trái với đầu bài)
Ta luôn có n^2+n-1 = n^2+1 +(n-2) > (n-2)
Vậy => n-2=1 => n=3 => p=11
Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3
Mà (2; 3) = 1 (2 và 3 nguyên tố cùng nhau) => A chia hết cho 2. 3 = 6 (đpcm)
a,gọi 2 STN liên tiếp là a và a+1
gọi ước chung của hai số là d. Ta có:
(a+1)-a chia hết cho d
=>1 chia hết cho d=>d=1
Vậy a và a+1 nguyên tố cùng nhau
b,gọi hai STN lẻ liên tiếp là a và a+2.Gọi ước chung của hai số là d
Ta có: (a+2)-a chhia hết cho d
=>2 chia hết cho d
=>d=1 hoặc 2
d khác 2 vì d là ước của số lẻ
Vậy d=1 =>a và a+2 nguyên tố cùng nhau
tick đi
chỉ sửa chỗ :
=>5(3n+1) chia hết cho d
=>3(5n+2)
=>15n+5 chia hết cho d
=>15n +6 chia hết cho d
từ đó........
3n + 1 và 5n +2 là 2 số nguyên tố cùng nhau
Gọi d là UCLN ( 3n+1 và 5n+2)
Ta có:
3n+1 chia hết cho d
5n+2 chia hết cho d
=> 5(3n+1) chia hết cho d
=> 3(5n+2) chia hết cho d
=> 15n+ 1 chia hết cho d
=> 15n+2 chia hết cho d
=> 15n+2- 15n+1 chia hết chi d
=> 1 chia hết cho d
=> d thuộc Ư ( 1)
=> UCLN ( d) = 1
=> UCLN ( d)= UCLN ( 3n+1 và 5n+2
Nguyên tố cùng nhau
tick nhé
Gọi hai số nhiên liên tiếp là n và n + 1(n N ) .
Đặt (n, n + 1) = d n d; n + 1 d. Do đó (n + 1) – n d hay 1 d suy ra d = 1.
vậy n và n + 1 là hai số nguyên tố cùng nhau.
Đây là cách rất gọn và dễ
k mk nha
Mk cảm ơn các bạn nhiều
Thank you very much
( ^ _ ^ )
Gọi 2 số tự nhiên liên tiếp là a và a+1
Gọi ước chung lớn nhât của a và a+ 1 là d
Ta có a chia hết cho d
a+ 1 chia hết cho d
=> (a+1)-a chia hết cho d
a + 1 - a = 1 nên suy ra d =1(vì 1 chỉa chia hết cho 1)
Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau
Gọi 2 số tự nhiên liên tiếp là n và n+1.Gọi d thuộc Ư(n;n+1)
Ta có: n chia hết cho d
n+1 chia hết cho d
=>(n+1)-n chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy 2 số tự nhiên liên tiếp thì nguyên tố cùng nhau
Vì 2 số tự nhiên liên tiếp ko chia hết cho nhau