Tìm x,y thuộc Z biết x^2+3y^2-4xy+4y-3=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
\(4x^2+4xy+2y^2-4x-4y+2=0\)
\(\Rightarrow4x^2+4xy+y^2-4x-2y+1+y^2-2y+1=0\)
\(\Rightarrow\left(2x+1\right)^2-2\left(2x+1\right)+1+\left(y-1\right)^2=0\)
\(\Rightarrow\left(2x+1-1\right)^2+\left(y-1\right)^2=0\)
\(\Rightarrow4x^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}4x^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}}\)
\(x^2+y^2=2011\) (1)
Nhận xét:
\(x^2-\text{và}-y^2-chia-cho-4-\text{chỉ}-\text{có}-\text{thể}-\text{dư}-0-\text{hoặc}-1\)
\(\Rightarrow x^2+y^2-chia-cho-4-\text{chỉ}-\text{có}-\text{thể}-\text{dư}-0-\text{hoặc}-1-\text{hoặc}-2\)
\(\text{mà}-2011-chia-cho-4-\text{dư}-3\)
=> Pt (1) vô no nguyên.
\(x^2+x-2y-4y^2=-7\) (2)
\(\Leftrightarrow4x^2+4x-8y-16y^2=-28\)
\(\Leftrightarrow\left(4x^2+4x+1\right)-\left(16y^2+8y+1\right)=-28\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(4y+1\right)^2=-28\)
\(\Leftrightarrow\left(2x+1-4y-1\right)\left(2x+1+4y+1\right)=-28\)
\(\Leftrightarrow\left(x-2y\right)\left(x+2y+1\right)=-28\)
Xét các trường hợp có thể xảy ra, và tìm được các no thoả mãn pt (2)
Pt (1) vô n0 nguyên là j đây bn? bn viết rõ ra xem nào
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)-\left(y^2-4y+4\right)=-1\\ \Leftrightarrow\left(x-2y\right)^2-\left(y-2\right)^2=-1\\ \Leftrightarrow\left(x-2y-y+2\right)\left(x-2y+y-2\right)=-1\\ \Leftrightarrow\left(x-3y+2\right)\left(x-y-2\right)=-1=\left(-1\right)\cdot1\)
\(TH_1:\left\{{}\begin{matrix}x-3y+2=1\\x-y-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3y=-1\\x-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\ TH_2:\left\{{}\begin{matrix}x-3y+2=-1\\x-y-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3y=-3\\x-y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=3\end{matrix}\right.\)
Vậy PT có nghiệm \(\left(x;y\right)\in\left\{\left(2;1\right);\left(6;3\right)\right\}\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)-\left(y^2-4y+4\right)+1=0\\ \Leftrightarrow\left(x-2y^2\right)-\left(y-2\right)^2=-1\\ \Leftrightarrow\left(x-2y-y+2\right)\left(x-2y+y-2\right)=-1\\ \Leftrightarrow\left(x-3y+2\right)\left(x-y-2\right)=-1\)
Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-y-2\in Z\\x-3y+2\in Z\\x-y-2,x-3y+2\inƯ\left(-1\right)=\left\{-1;1\right\}\end{matrix}\right.\)
Ta có bảng: