K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2021

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)-\left(y^2-4y+4\right)=-1\\ \Leftrightarrow\left(x-2y\right)^2-\left(y-2\right)^2=-1\\ \Leftrightarrow\left(x-2y-y+2\right)\left(x-2y+y-2\right)=-1\\ \Leftrightarrow\left(x-3y+2\right)\left(x-y-2\right)=-1=\left(-1\right)\cdot1\)

\(TH_1:\left\{{}\begin{matrix}x-3y+2=1\\x-y-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3y=-1\\x-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\ TH_2:\left\{{}\begin{matrix}x-3y+2=-1\\x-y-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3y=-3\\x-y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=3\end{matrix}\right.\)

Vậy PT có nghiệm \(\left(x;y\right)\in\left\{\left(2;1\right);\left(6;3\right)\right\}\)

15 tháng 11 2021

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)-\left(y^2-4y+4\right)+1=0\\ \Leftrightarrow\left(x-2y^2\right)-\left(y-2\right)^2=-1\\ \Leftrightarrow\left(x-2y-y+2\right)\left(x-2y+y-2\right)=-1\\ \Leftrightarrow\left(x-3y+2\right)\left(x-y-2\right)=-1\)

Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-y-2\in Z\\x-3y+2\in Z\\x-y-2,x-3y+2\inƯ\left(-1\right)=\left\{-1;1\right\}\end{matrix}\right.\)

Ta có bảng:

\(x-3y+2\)\(-1\)\(1\)
\(x-y-2\)\(1\)\(-1\)
\(x\)62
\(y\)31

 

6 tháng 9 2021

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

25 tháng 8 2021

bạn viết lại đề đi, có số mũ, xuống dòng chứ thế này ai mà giải được

14 tháng 7 2019

\(4x^2+4xy+2y^2-4x-4y+2=0\)

\(\Rightarrow4x^2+4xy+y^2-4x-2y+1+y^2-2y+1=0\)

\(\Rightarrow\left(2x+1\right)^2-2\left(2x+1\right)+1+\left(y-1\right)^2=0\)

\(\Rightarrow\left(2x+1-1\right)^2+\left(y-1\right)^2=0\)

\(\Rightarrow4x^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}4x^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}}\)

9 tháng 8 2017

\(x^2+y^2=2011\) (1)

Nhận xét:

\(x^2-\text{và}-y^2-chia-cho-4-\text{chỉ}-\text{có}-\text{thể}-\text{dư}-0-\text{hoặc}-1\)

\(\Rightarrow x^2+y^2-chia-cho-4-\text{chỉ}-\text{có}-\text{thể}-\text{dư}-0-\text{hoặc}-1-\text{hoặc}-2\)

\(\text{mà}-2011-chia-cho-4-\text{dư}-3\)

=> Pt (1) vô no nguyên.

\(x^2+x-2y-4y^2=-7\) (2)

\(\Leftrightarrow4x^2+4x-8y-16y^2=-28\)

\(\Leftrightarrow\left(4x^2+4x+1\right)-\left(16y^2+8y+1\right)=-28\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(4y+1\right)^2=-28\)

\(\Leftrightarrow\left(2x+1-4y-1\right)\left(2x+1+4y+1\right)=-28\)

\(\Leftrightarrow\left(x-2y\right)\left(x+2y+1\right)=-28\)

Xét các trường hợp có thể xảy ra, và tìm được các no thoả mãn pt (2)

Pt (1) vô n0 nguyên là j đây bn? bn viết rõ ra xem nào